首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary purposes of this research were to describe and classify the circulating hemocytes of Cancer magister and devise a method for making differential hemocyte counts for crustaceans. C. magister hemocytes were classified using two simple criteria: the presence or absence of cytoplasmic granules and staining characteristics of the granules, if present. Hyalinocytes (HC) were devoid of granules, intermediate granulocytes (IG) contained basophilic granules or a mixture of basophilic and acidophilic granules, and eosinophilic granulocytes (EG) contained large, acidophilic granules. Hemocyte renewal and a hypothetical maturation sequence of C. magister hemocytes are described and discussed. Differential counts revealed that granulocytes were more abundant than hyalinocytes. For 22 crabs, the mean percentage (and range) of each hemocyte class was: IG, 65.97 (57.50–73.80); EG, 17.76 (4.70–26.47); and HC, 16.25 (3.40–34.67). After additional data are collected and analyzed, the routine use of differential counts may prove to be a valuable method for monitoring the status and health of C. magister and perhaps other crustaceans as well.  相似文献   

2.
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined 24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph trehalose levels was found during the molt cycle. The current study provides the first evidence of presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role in energy metabolism and physiological adaptation.  相似文献   

3.
Observations of cuticular structures mineralized with silica within the Crustacea have been limited to the opal teeth of copepods, mandibles of amphipods, and recently the teeth of the gastric mill in the blue crab Callinectes sapidus. Copepod teeth are deposited during premolt, with sequential elaboration of organic materials followed by secretion of silica into the tooth mold. The timing of mineralization is in stark contrast to that of the general integument of crustaceans in which calcification is completely restricted to the postmolt period. To determine the timing of molt‐related deposition and silicification of the teeth of the gastric mill, the medial tooth of the blue crab C. sapidus was examined histologically and ultrastructurally across the molt cycle. Histological data revealed deposition of the organic matrix of the epicuticle and exocuticle during premolt. No evidence of postmolt changes in the thickness of the epicuticle and exocuticle, or any deposition of endocuticle, was observed. Scanning electron microscopy revealed degradation of the outer surface of the old tooth during premolt. During premolt, epithelial structures resembling papilla appeared to secrete a fibrous web that coalesces to become the matrix of the new tooth. Semi‐quantitative elemental analyses indicated simultaneous deposition of silica and organic matrix, and demonstrated a homogeneous distribution of silicon throughout the epicuticle of the tooth at all stages. However, there is evidence of deposition (presumably silicification) during postmolt as spaces between the papillae become filled in. Thus, the pattern and timing of deposition and silicification of the tooth are different from both teeth of copepods and the general exoskeleton of decapods, and may facilitate rapid resumption of feeding and consumption of the exuvia in early postmolt. J. Morphol. 277:1648–1660, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
5.
Culexpipiens quinquefasciatus (C. quinquefasciatus) is an important vector that can transmit human diseases such as West Nile virus, lymphatic filariasis, Japanese encephalitis and St. Louis encephalitis. However, very limited research concerning the humoral and cellular immune defenses of C. quinquefasciatus has been done. Here we present the research on hemocyte identification and plasma including hemocyte prophenoloxidase from C. quinquefasciatus at all developmental stages in order to obtain a complete picture of C. quinquefasciatus innate immunity. We identified hemocytes into four types: prohemocytes, oenocytoids, plasmatocytes and granulocytes. Prophenoloxidase (PPO) is an essential enzyme to induce melanization after encapsulation. PPO-positive hemocytes and plasma PPO were observed at all developmental stages. As for specific hemocyte types, prophenoloxidase was found in the plasmatocytes at larval stage alone and in the smallest prohemocytes during almost all developmental stages. Moreover, the granulocytes were PPO-positive from blood-fed female mosquitoes and oenocytoids were observed PPO-positive in pupae and in adult females after blood-feeding. As for plasma, there were different patterns of PPO in C. quinquefasciatus at different developmental stages. These results are forming a basis for further studies on the function of C. quinquefasciatus hemocytes and prophenoloxidase as well as their involvement in fighting against mosquito-borne pathogens.  相似文献   

6.
Monoclonal antibodies (MAbs) to hemocytes of mud crab, Scylla serrata, were produced by immunizing mice with formalin-fixed hemocytes. Of the six MAbs produced, two (MAb 1D11 and MAb 1A2) reacted specifically with hemocyte proteins in western blot. MAb 1A2 showed strong immunofluorescent reaction with granular hemocytes and a weak reaction with semigranular cells. However, hyaline cells did not show any reaction. The MAbs also showed strong cross-reactivity with the hemocytes of different crab species but not with other crustaceans. The MAbs produced can be used as a marker for granular hemocytes of crabs.  相似文献   

7.
The hemocytes of two palaemonids and one penaeid were characterized using light and transmission electron microscopy (TEM). The blood cells in all three species were classified as hyaline hemocytes (HH), small granule hemocytes (SGH), and large granule hemocytes (LGH). The HH are unstable hemocytes with a characteristic high nucleo-cytoplasmic ratio. Their cytoplasm appears particularly dense and has from few to numerous granules that often exhibit a typical striated substructure. In both palaemonids, the great majority of the HH contain numerous granules, whereas in Penaeus paulensis, a small number of these cells have few or no granules. The cytoplasm of some HH of the penaeid exhibits typical electron-dense deposits. The granulocytes, LGH and SGH, contain abundant electron-dense granules that are usually smaller in the SGH. In both hemocyte types, the cytosol, but not the granules, is rich in carbohydrates (PAS positive) and numerous vesicles contain acid phosphatase (Gomori reactive). In all studied shrimps, the SGH and LGH were actively phagocytic when examined on blood cell monolayers incubated with the yeast Saccharomyces cerevisiae. A few mitotic figures (less than 1%) were observed in the granulocytes of P. paulensis, but not in the palaemonids. SGH is the main circulating blood cell type in both palaemonids, whereas HH is predominant in the penaeid. Based on morphological and functional features, it appears that the hyaline and the granular hemocytes of the three shrimp species represent different cell lineages. J. Morphol. 236:209–221, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The present study focuses on the ability of Pterostichus melas italicus Dejean to mount cellular and humoral immune responses against invading pathogens. Ultrastructural analyses revealed the presence of five morphologically distinct types of hemocytes: prohemocytes, plasmatocytes, granulocytes, oenocytoids and macrophage-like cells. Differential hemocyte counts showed that plasmatocytes and granulocytes were the most abundant circulating cell types and plasmatocytes exhibited phagocytic activity following the latex bead immune challenge. Macrophage-like cells were recruited after the immune challenge to remove exhausted phagocytizing cells, apoptotic cells and melanotic capsules formed to immobilize the latex beads. Total hemocyte counts showed a significant reduction of hemocytes after latex bead treatment. Phenoloxidase (PO) assays revealed an increase of total PO in hemolymph after immune system activation with lipopolysaccharide (LPS). Moreover, the LPS-stimulated hemocytes showed increased protein expression of inducible nitric oxide synthase, indicating that the cytotoxic action of nitric oxide was engaged in this antimicrobial collaborative response. These results provide a knowledge base for further studies on the sensitivity of the P. melas italicus immune system to the environmental perturbation in order to evaluate the effect of chemicals on non-target species in agroecosystems.  相似文献   

9.
To clarify the regulatory mechanism of the rapid changes in the hemocyte density in the silkworm, Bombyx mori, during ecdysis, we evaluated the relationship between the hemocyte density and the incidence of apoptosis during this stage. We also evaluated the role of the sugar chains on the adhesion of hemocytes by analyzing the effects on the hemocyte density of the injection of enzymes that cut sugar chains and monosaccharides into the body cavity. The hemocyte density was increased in the molting stage and spinning, and then decreased after the ecdysis. During spinning, the diameter of the granulocytes markedly increased, in which fatty granules in the cytoplasm increased, becoming foamy. They were identified to be apoptotic hemocytes using the Hoechst staining and the Comet assay. The decrease in the hemocyte density during spinning was mainly caused by the apoptosis of granulocytes. Next, we focused on the fluctuation of hemocyte density during the molting stage. Examination of the changes in the hemocyte density induced by injecting glycoside hydrolases, neuraminidase, sialic acid, or monosaccharides into the body cavity during the fourth molt stage and the third day in fifth instar larva demonstrated that the alteration of hemocyte density was regulated by the attachment and detachment of hemocytes via a selectin ligand, sugar chains. As with the injection of glycoside hydrolase, neuraminidase, sialic acid and fucose raised the hemocyte detachment, and it was assumed that the selectin ligands include the sialyl Lewis x like sugar chains, the same as mammalian lymphocytes.  相似文献   

10.
The cellular arm of the insect immune response is mediated by the activity of hemocytes. While hemocytes have been well-characterized morphologically and functionally in model insects, few studies have characterized the hemocytes of non-model insects. Further, the role of ontogeny in mediating immune response is not well understood in non-model invertebrate systems. The goals of the current study were to (1) determine the effects of caterpillar size (and age) on hemocyte density in naïve caterpillars and caterpillars challenged with non-pathogenic bacteria, and (2) characterize the hemocyte activity and diversity of cell types present in two forest caterpillars: Euclea delphinii and Lithacodes fasciola (Limacodidae). We found that although early and late instar (small and large size, respectively) naïve caterpillars had similar constitutive hemocyte densities in both species, late instar Lithacodes caterpillars injected with non-pathogenic E. coli produced more than a twofold greater density of hemocytes than those in early instars. We also found that both caterpillar species contained plasmatocytes, granulocytes and oenocytoids, all of which are found in other lepidopteran species, but lacked spherulocytes. Granulocytes and plasmatocytes were found to be strongly phagocytic in both species, but granulocytes exhibited a higher phagocytic activity than plasmatocytes. Our results strongly suggest that for at least one measure of immunological response, the production of hemocytes in response to infection, response magnitudes can increase over ontogeny. While the underlying raison d’ être for this improvement remains unclear, these findings may be useful in explaining natural patterns of stage-dependent parasitism and pathogen infection.  相似文献   

11.
Arthropod phenoloxidases catalyze the melanization and sclerotization of the new postmolt exoskeleton, and they function in the immune response. Hemocyanin, phylogenetically related to phenoloxidase, can function as a phenoloxidase under certain conditions. We investigated the relative contributions of hemocyte phenoloxidase and hemocyanin in the brachyuran crab Cancer magister, using the physiological ratio at which they occur in the hemolymph, and found that hemocyte phenoloxidase has higher activity. They both convert diphenols to o-quinones, but only the hemocyte phenoloxidase is able to catalyze the conversion of monophenols to diphenols. The quaternary structure of hemocyanin affects its reactivity as phenoloxidase. We suggest that prophenoloxidase is released from hemocytes and moves across epidermis into new exoskeleton during premolt and is activated in early postmolt. In addition to functional studies, we have determined the complete cDNA sequence of C. magister hemocyte prophenoloxidase and partial sequences from the branchiopods Artemia franciscana and Triops longicaudatus. We also sequenced C. magister cryptocyanin 2 and a hemocyanin from the amphipod Cyamus scammoni and used these and other members of the arthropod hemocyanin superfamily for phylogenetic analyses. The phylogenies presented here are consistent with the possibility that a common ancestral molecule had both phenoloxidase and reversible oxygen-binding capabilities.  相似文献   

12.
Maintenance of hemocyte populations is critical for both development and immune responses. In insects, the maintenance of hemocyte populations is regulated by mitotic division of circulating hemocytes and by discharge from hematopoietic organs. We found cell clusters in the hemolymph of Mamestra brassicae larvae that are composed of small, spherical cells. Microscopic observations revealed that the cells in these clusters are similar to immature or precursor cells present in hematopoietic organs. The results of bromodeoxyuridine (BrdU) incorporation experiments demonstrate that these cells are mitotically active. Furthermore, these cells maintain their immature state and proliferate until late in the last larval instar. The results of in vitro experiments showed that most of the cells changed their morphology to one consistent with plasmatocytes or granulocytes, and that the change was promoted by addition of larval hemolymph to the culture medium, in particular when hemolymph was collected at a prepupal stage. Taken together, our results suggested that cells in clusters may be an additional source of hemocytes during larval development.  相似文献   

13.
The innate immune response is a conserved trait shared by invertebratesand vertebrates. In crustaceans, circulating hemocytes playsignificant roles in the immune response, including the releaseof prophenoloxidases. Activated phenoloxidase (tyrosinase) participatesin encapsulation and melanization of foreign organisms as wellas sclerotization of the new exoskeleton after wound-repairor molting. Hemocyanin functions as a phenoloxidase under certainconditions and thus also participates in the immune responseand molting. The relative contributions of hemocyte phenoloxidaseand hemocyanin in the physiological ratio at which they occurin hemolymph have been investigated in the crab Cancer magister.Differences in activity, substrate affinity, and catalytic abilitybetween the two enzymes indicate that hemocytes are the predominantsource of phenoloxidase activity in crabs. In contrast, hemocyaninis the primary source of phenoloxidase activity in isopods andchelicerates whose hemocytes show no phenoloxidase activity.Quantitative PCR studies on the distribution of prophenoloxidasemRNA in the tissues of Carcinus maenas showed little effectrelative to salinity stress. Phylogenetic analysis of hemocyanin,phenoloxidase, and other members of this arthropod gene familyare consistent with the possibility that a common ancestralmolecule had both phenoloxidase and oxygen-binding capabilities.  相似文献   

14.
Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs), although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC) neurons with pericardial organs (POs) as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI), we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods.  相似文献   

15.
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated.In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components.  相似文献   

16.
The initial and principal encapsulation response of Ligia oceanica to Araldite implants and to encysted metacercariae of Maritrema linguilla is hemolymph coagulation followed by limited hemocyte agglutination. Granules secreted by isolated granulocytes and semigranulocytes may catalyze coagulation. Isolated hyaline cells explode and make an insignificant contribution to the initial cyst wall. Later, hemocytes agglutinate and some granulocytes retain their granules which become melanized. Eventually, a wide multilayered hos capsule is formed. Unencysted metacercariae of M. linguilla transplanted from the pleopods into the dorsal hemocoel of another specimen of L. oceanica encyst and become encapsulated but are not damaged by encapsulation. Transplanted encysted metacercariae are also encapsulated and unharmed. Cercariae implanted directly into the dorsal hemocoel, however, fail to encyst, become encapsulated, die, and lyse within the capsule. Implanted cercariae and encysted metacercariae of Microphallus similis are also encapsulated and destroyed in the hemocoel of L. oceanica. The absence of host response to the naturally infecting unencysted parasite in the pleopod sinuses may be attributed to rhythmic movement, mucopolysaccharide secretions and to the retention of excreta within the excretory bladder. Once the excreta is released during cyst formation in the dorsal hemocoel, encapsulation occurs but this does not appear to harm the parasite. On the contrary, considerable growth occurs within the cyst which suggests that the parasite may absorb nutrients released from necrotic hemocytes.  相似文献   

17.
Insect cellular immune responses accompany cytoskeletal rearrangement of hemocytes to exhibit filopodial and pseudopodial extension of their cytoplasm. Small G proteins are postulated to be implicated in the hemocyte cellular processes to perform phagocytosis, nodulation, and encapsulation behaviors. A small G protein ras gene (Se-Ras) was cloned from cDNAs prepared from hemocytes of the beet armyworm, Spodoptera exigua. The open reading frame of Se-Ras encoded 179 amino acids with a predicted molecular weight of 20.0 kDa, in which 114 residues at amino terminus were predicted to be a GTP binding domain. It showed high sequence similarities (86.1-92.8%) with known ras genes in other insects. Se-Ras was constitutively expressed in all developmental stages from egg to adult without any significant change in expression levels in response to bacterial challenge. A specific double strand RNA (dsRNA) could knockdown its expression in the hemocytes after 48 h post-injection. While the RNA interference (RNAi) did not show any change in total or differential hemocyte counts, it impaired hemocyte behaviors. The RNAi of Se-Ras significantly suppressed hemocyte spreading, cytoskeleton extension, and nodulation behaviors in response to bacterial challenge. Release of prophenoloxidase from oenocytoids was significantly inhibited by the RNAi, which resulted in significant suppression in PO activation in response to an inducer, PGE2. These results suggest that Se-Ras is implicated in mediating cellular processes of S. exigua hemocytes. This is the first report of Ras role in insect cellular immune response.  相似文献   

18.
Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in P. brevitarsis seulensis. The circulating hemocytes were classified based on their size, morphology, and dye-staining properties into six types, including granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. The percentages of circulating hemocyte types were as follows: 13% granulocytes, 20% plasmatocytes, 1% oenocytoids, 5% spherulocytes, 17% prohemocytes, and 44% adipohemocytes. Next, we identified the professional phagocytes, granulocytes, which mediate encapsulation and phagocytosis of pathogens. The granulocytes were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo. In addition, we showed that the phagocytosis by granulocytes is associated with autophagy, and that the activation of autophagy could be an efficient way to eliminate pathogens in this system. We also observed a high accumulation of autophagic vacuoles in activated granulocytes, which altered their shape and led to autophagic cell death. Finally, the granulocytes underwent mitotic division thus maintaining their number in vivo.  相似文献   

19.
Abstract. The lectin wheat-germ agglutinin (WGA) selectively binds N-acetyl-D-glucosamine. Fluorescence and electron microscopy were used to show that WGA stains the cytoplasmic granules in the granulocytes, but not the hyaline cells, of two decapods, the ridgeback prawn Sicyonia ingentis and the American lobster Homarus americanus. Using fluorescence microscopy, two intermediate stages in granulocyte maturation were observed. Cells smaller than typical small-granule hemocytes were observed with 5 or fewer granules, which in previous studies using brightfield and phase optics were probably counted as hyaline cells. Also, some granulocytes were observed containing both small and large granules, supporting the suggestion that small and large granule hemocytes represent stages in the maturation of one cell line. Granules in the single type of hemocyte in the branchiopod Artemia franciscana did not stain with WGA. The possible roles of N-acetyl-D-glucosamine in wound healing, pathogen encapsulation, and maintenance of normal crustacean connective tissues are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号