首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal behavior can have profound effects on pathogen transmission and disease incidence. We studied the questing (= host-seeking) behavior of blacklegged tick (Ixodes scapularis) nymphs, which are the primary vectors of Lyme disease in the eastern United States. Lyme disease is common in northern but not in southern regions, and prior ecological studies have found that standard methods used to collect host-seeking nymphs in northern regions are unsuccessful in the south. This led us to hypothesize that there are behavior differences between northern and southern nymphs that alter how readily they are collected, and how likely they are to transmit the etiological agent of Lyme disease to humans. To examine this question, we compared the questing behavior of I. scapularis nymphs originating from one northern (Lyme disease endemic) and two southern (non-endemic) US regions at field sites in Wisconsin, Rhode Island, Tennessee, and Florida. Laboratory-raised uninfected nymphs were monitored in circular 0.2 m2 arenas containing wooden dowels (mimicking stems of understory vegetation) for 10 (2011) and 19 (2012) weeks. The probability of observing nymphs questing on these stems (2011), and on stems, on top of leaf litter, and on arena walls (2012) was much greater for northern than for southern origin ticks in both years and at all field sites (19.5 times greater in 2011; 3.6–11.6 times greater in 2012). Our findings suggest that southern origin I. scapularis nymphs rarely emerge from the leaf litter, and consequently are unlikely to contact passing humans. We propose that this difference in questing behavior accounts for observed geographic differences in the efficacy of the standard sampling techniques used to collect questing nymphs. These findings also support our hypothesis that very low Lyme disease incidence in southern states is, in part, a consequence of the type of host-seeking behavior exhibited by southern populations of the key Lyme disease vector.  相似文献   

2.
Vector‐borne microbes necessarily co‐occur with their hosts and vectors, but the degree to which they share common evolutionary or biogeographic histories remains unexplored. We examine the congruity of the evolutionary and biogeographic histories of the bacterium and vector of the Lyme disease system, the most prevalent vector‐borne disease in North America. In the eastern and midwestern US, Ixodes scapularis ticks are the primary vectors of Borrelia burgdorferi, the bacterium that causes Lyme disease. Our phylogeographic and demographic analyses of the 16S mitochondrial rDNA suggest that northern I. scapularis populations originated from very few migrants from the southeastern US that expanded rapidly in the Northeast and subsequently in the Midwest after the recession of the Pleistocene ice sheets. Despite this historical gene flow, current tick migration is restricted even between proximal sites within regions. In contrast, B. burgdorferi suffers no barriers to gene flow within the northeastern and midwestern regions but shows clear interregional migration barriers. Despite the intimate association of B. burgdorferi and I. scapularis, the population structure, evolutionary history, and historical biogeography of the pathogen are all contrary to its arthropod vector. In the case of Lyme disease, movements of infected vertebrate hosts may play a larger role in the contemporary expansion and homogenization of the pathogen than the movement of tick vectors whose populations continue to bear the historical signature of climate‐induced range shifts.  相似文献   

3.
Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.  相似文献   

4.
Ixodes scapularis, the tick vector of Lyme disease and human granulocytic ehrlichiosis (HGE), is prevalent in much of southern New York state. The distribution of this species has increased, as have reported cases of both Lyme disease and HGE. The unreliability of case reports, however, demonstrates the need for tick and pathogen surveillance in order to accurately define areas of high risk. In this study, a total of 89,550 m2 at 34 study sites was drag sampled in 1995 and a total of 51,540 m2 at 40 sites was sampled in 1996 to determine tick and pathogen distribution in southern New York state. I. scapularis was collected from 90% of the sites sampled, and regionally, a 2.5-fold increase in nymphal abundance occurred from 1995 to 1996. I. scapularis individuals from all sites were infected with Borrelia burgdorferi in 1995, while an examination of ticks for both B. burgdorferi and the agent of HGE in 1996 confirmed that these organisms were present in all counties; the average coinfection rate was 1.9%. No correlation was found between estimated risk and reported cases of Lyme disease. The geographic disparity of risk observed among sites in this study underscores the need for vector and pathogen surveillance on a regional level. An entomologic risk index can help identify sites for targeted tick control efforts.  相似文献   

5.
Lyme disease risk is increasing in the United States due in part to the spread of blacklegged ticks Ixodes scapularis, the principal vector of the spirochetal pathogen Borrelia burgdorferi. A 5-year study was undertaken to investigate hypothesized coinvasion of I. scapularis and B. burgdorferi in Lower Michigan. We tracked the spatial and temporal dynamics of the tick and spirochete using mammal, bird, and vegetation drag sampling at eight field sites along coastal and inland transects originating in a zone of recent I. scapularis establishment. We document northward invasion of these ticks along Michigan’s west coast during the study period; this pattern was most evident in ticks removed from rodents. B. burgdorferi infection prevalences in I. scapularis sampled from vegetation in the invasion zone were 9.3% and 36.6% in nymphs and adults, respectively, with the majority of infection (95.1%) found at the most endemic site. There was no evidence of I. scapularis invasion along the inland transect; however, low-prevalence B. burgdorferi infection was detected in other tick species and in wildlife at inland sites, and at northern coastal sites in years before the arrival of I. scapularis. These infections suggest that cryptic B. burgdorferi transmission by other vector-competent tick species is occurring in the absence of I. scapularis. Other Borrelia spirochetes, including those that group with B. miyamotoi and B. andersonii, were present at a low prevalence within invading ticks and local wildlife. Reports of Lyme disease have increased significantly in the invasion zone in recent years. This rapid blacklegged tick invasion—measurable within 5 years—in combination with cryptic pathogen maintenance suggests a complex ecology of Lyme disease emergence in which wildlife sentinels can provide an early warning of disease emergence.  相似文献   

6.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

7.
Ixodes scapularis is the specific arthropod vector for a number of globally prevalent infections, including Lyme disease caused by the bacterium Borrelia burgdorferi. A feeding-induced and acellular epithelial barrier, known as the peritrophic membrane (PM) is detectable in I. scapularis. However, whether or how the PM influences the persistence of major tick-borne pathogens, such as B. burgdorferi, remains largely unknown. Mass spectrometry-based proteome analyses of isolated PM from fed ticks revealed that the membrane contains a few detectable proteins, including a predominant and immunogenic 60 kDa protein with homology to arthropod chitin deacetylase (CDA), herein termed I. scapularis CDA-like protein or IsCDA. Although IsCDA is primarily expressed in the gut and induced early during tick feeding, its silencing via RNA interference failed to influence either the occurrence of the PM or spirochete persistence, suggesting a redundant role of IsCDA in tick biology and host-pathogen interaction. However, treatment of ticks with antibodies against IsCDA, one of the most predominant protein components of PM, affected B. burgdorferi survival, significantly augmenting pathogen levels within ticks but without influencing the levels of total gut bacteria. These studies suggested a preferential role of tick PM in limiting persistence of B. burgdorferi within the vector. Further understanding of the mechanisms by which vector components contribute to pathogen survival may help the development of new strategies to interfere with the infection.  相似文献   

8.
We identified ticks submitted by the public from 2008 through 2012 in Ontario, Canada, and tested blacklegged ticks Ixodes scapularis for Borrelia burgdorferi and Anaplasma phagocytophilum. Among the 18 species of ticks identified, I. scapularis, Dermacentor variabilis, Ixodes cookei and Amblyomma americanum represented 98.1% of the 14,369 ticks submitted. Rates of blacklegged tick submission per 100,000 population were highest in Ontario''s Eastern region; D. variabilis in Central West and Eastern regions; I. cookei in Eastern and South West regions; and A. americanum had a scattered distribution. Rates of blacklegged tick submission per 100,000 population were highest from children (0–9 years old) and older adults (55–74 years old). In two health units in the Eastern region (i.e., Leeds, Grenville & Lanark District and Kingston-Frontenac and Lennox & Addington), the rate of submission for engorged and B. burgdorferi-positive blacklegged ticks was 47× higher than the rest of Ontario. Rate of spread for blacklegged ticks was relatively faster and across a larger geographic area along the northern shore of Lake Ontario/St. Lawrence River, compared with slower spread from isolated populations along the northern shore of Lake Erie. The infection prevalence of B. burgdorferi in blacklegged ticks increased in Ontario over the study period from 8.4% in 2008 to 19.1% in 2012. The prevalence of B. burgdorferi-positive blacklegged ticks increased yearly during the surveillance period and, while increases were not uniform across all regions, increases were greatest in the Central West region, followed by Eastern and South West regions. The overall infection prevalence of A. phagocytophilum in blacklegged ticks was 0.3%. This study provides essential information on ticks of medical importance in Ontario, and identifies demographic and geographic areas for focused public education on the prevention of tick bites and tick-borne diseases.  相似文献   

9.
During the spring in 2005 and 2006, 39,095 northward-migrating land birds were captured at 12 bird observatories in eastern Canada to investigate the role of migratory birds in northward range expansion of Lyme borreliosis, human granulocytic anaplasmosis, and their tick vector, Ixodes scapularis. The prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95% confidence interval [CI] = 0.30 to 0.42), but a nested study by experienced observers suggested a more realistic infestation prevalence of 2.2% (95% CI = 1.18 to 3.73). The mean infestation intensity was 1.66 per bird. Overall, 15.4% of I. scapularis nymphs (95% CI = 10.7 to 20.9) were PCR positive for Borrelia burgdorferi, but only 8% (95% CI = 3.8 to 15.1) were positive when excluding nymphs collected at Long Point, Ontario, where B. burgdorferi is endemic. A wide range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were identified in infected ticks, including those associated with disseminated Lyme disease and alleles that are rare in the northeastern United States. Overall, 0.4% (95% CI = 0.03 to 0.41) of I. scapularis nymphs were PCR positive for Anaplasma phagocytophilum. We estimate that migratory birds disperse 50 million to 175 million I. scapularis ticks across Canada each spring, implicating migratory birds as possibly significant in I. scapularis range expansion in Canada. However, infrequent larvae and the low infection prevalence in ticks carried by the birds raise questions as to how B. burgdorferi and A. phagocytophilum become endemic in any tick populations established by bird-transported ticks.  相似文献   

10.
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.  相似文献   

11.
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B. burgdorferi and its orthologous protein BSE31 (BSPA14S_RS05060 gene product) from B. spielmanii. BBE31 is known to be important for the transfer of B. burgdorferi from the gut to the hemolymph in the tick after a tick bite. While BBE31 exerts its function by interacting with the Ixodes scapularis tick gut protein TRE31, structural and mass spectrometry data revealed that BBE31 has a glutathione (GSH) covalently attached to Cys142 suggesting that the protein may have acquired some additional functions in contrast to its orthologous protein BSE31, which lacks any interactions with GSH. In the current study, in addition to analyzing the potential reasons for GSH binding, the three-dimensional structure of BBE31 provides new insights into the molecular details of the transmission process as the protein plays an important role in the initial phase before the spirochete is physically transferred to the new host. This knowledge will be potentially used for the development of new strategies to fight against Lyme disease.  相似文献   

12.
Ticks are found worldwide and afflict humans with many tick-borne illnesses. Ticks are vectors for pathogens that cause Lyme disease and tick-borne relapsing fever (Borrelia spp.), Rocky Mountain Spotted fever (Rickettsia rickettsii), ehrlichiosis (Ehrlichia chaffeensis and E. equi), anaplasmosis (Anaplasma phagocytophilum), encephalitis (tick-borne encephalitis virus), babesiosis (Babesia spp.), Colorado tick fever (Coltivirus), and tularemia (Francisella tularensis) 1-8. To be properly transmitted into the host these infectious agents differentially regulate gene expression, interact with tick proteins, and migrate through the tick 3,9-13. For example, the Lyme disease agent, Borrelia burgdorferi, adapts through differential gene expression to the feast and famine stages of the tick''s enzootic cycle 14,15. Furthermore, as an Ixodes tick consumes a bloodmeal Borrelia replicate and migrate from the midgut into the hemocoel, where they travel to the salivary glands and are transmitted into the host with the expelled saliva 9,16-19.As a tick feeds the host typically responds with a strong hemostatic and innate immune response 11,13,20-22. Despite these host responses, I. scapularis can feed for several days because tick saliva contains proteins that are immunomodulatory, lytic agents, anticoagulants, and fibrinolysins to aid the tick feeding 3,11,20,21,23. The immunomodulatory activities possessed by tick saliva or salivary gland extract (SGE) facilitate transmission, proliferation, and dissemination of numerous tick-borne pathogens 3,20,24-27. To further understand how tick-borne infectious agents cause disease it is essential to dissect actively feeding ticks and collect tick saliva. This video protocol demonstrates dissection techniques for the collection of hemolymph and the removal of salivary glands from actively feeding I. scapularis nymphs after 48 and 72 hours post mouse placement. We also demonstrate saliva collection from an adult female I. scapularis tick.  相似文献   

13.
Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, is an emerging zoonotic disease in Canada and is vectored by the blacklegged tick, Ixodes scapularis. Here we used Bayesian analyses of sequence types (STs), determined by multilocus sequence typing (MLST), to investigate the phylogeography of B. burgdorferi populations in southern Canada and the United States by analyzing MLST data from 564 B. burgdorferi-positive samples collected during surveillance. A total of 107 Canadian samples from field sites were characterized as part of this study, and these data were combined with existing MLST data for samples from the United States and Canada. Only 17% of STs were common between both countries, while 49% occurred only in the United States, and 34% occurred only in Canada. However, STs in southeastern Ontario and southwestern Quebec were typically identical to those in the northeastern United States, suggesting a recent introduction into this region from the United States. In contrast, STs in other locations in Canada (the Maritimes; Long Point, Ontario; and southeastern Manitoba) were frequently unique to those locations but were putative descendants of STs previously found in the United States. The picture in Canada is consistent with relatively recent introductions from multiple refugial populations in the United States. These data thus point to a geographic pattern of populations of B. burgdorferi in North America that may be more complex than simply comprising northeastern, midwestern, and Californian groups. We speculate that this reflects the complex ecology and spatial distribution of key reservoir hosts.  相似文献   

14.
Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.  相似文献   

15.
Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota.  相似文献   

16.
17.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

18.
The white-footed mouse (Peromyscus leucopus) is an important reservoir host for Borrelia burgdorferi, the pathogen responsible for Lyme disease, and its distribution is expanding northward. We used an Ecological Niche Factor Analysis to identify the climatic factors associated with the distribution shift of the white-footed mouse over the last 30 years at the northern edge of its range, and modeled its current and potential future (2050) distributions using the platform BIOMOD. A mild and shorter winter is favouring the northern expansion of the white-footed mouse in Québec. With more favorable winter conditions projected by 2050, the distribution range of the white-footed mouse is expected to expand further northward by 3° latitude. We also show that today in southern Québec, the occurrence of B. burgdorferi is associated with high probability of presence of the white-footed mouse. Changes in the distribution of the white-footed mouse will likely alter the geographical range of B. burgdorferi and impact the public health in northern regions that have yet to be exposed to Lyme disease.  相似文献   

19.
In the Thousand Islands region of eastern Ontario, Canada, Lyme disease is emerging as a serious health risk. The factors that influence Lyme disease risk, as measured by the number of blacklegged tick (Ixodes scapularis) vectors infected with Borrelia burgdorferi, are complex and vary across eastern North America. Despite study sites in the Thousand Islands being in close geographic proximity, host communities differed and both the abundance of ticks and the prevalence of B. burgdorferi infection in them varied among sites. Using this archipelago in a natural experiment, we examined the relative importance of various biotic and abiotic factors, including air temperature, vegetation, and host communities on Lyme disease risk in this zone of recent invasion. Deer abundance and temperature at ground level were positively associated with tick abundance, whereas the number of ticks in the environment, the prevalence of B. burgdorferi infection, and the number of infected nymphs all decreased with increasing distance from the United States, the presumed source of this new endemic population of ticks. Higher species richness was associated with a lower number of infected nymphs. However, the relative abundance of Peromyscus leucopus was an important factor in modulating the effects of species richness such that high biodiversity did not always reduce the number of nymphs or the prevalence of B. burgdorferi infection. Our study is one of the first to consider the interaction between the relative abundance of small mammal hosts and species richness in the analysis of the effects of biodiversity on disease risk, providing validation for theoretical models showing both dilution and amplification effects. Insights into the B. burgdorferi transmission cycle in this zone of recent invasion will also help in devising management strategies as this important vector-borne disease expands its range in North America.  相似文献   

20.
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three‐year, bird‐tick‐pathogen study (2004–2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada‐wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf‐rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete‐infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first‐time records for: ticks in the Yukon (north of 60° latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird‐derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden‐crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir‐competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.‐infected ticks into Canada. Bird‐feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号