共查询到20条相似文献,搜索用时 0 毫秒
1.
Joseph A. Moss Andreas Nocker Joe E. Lepo Richard A. Snyder 《Applied microbiology》2006,72(9):5679-5688
Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen. 相似文献
2.
We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats
of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including
tires (n = 12), cemetery urns (n = 23), and miscellaneous containers that included two tree holes (n = 19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units,
OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in
containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial
distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes
were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed
in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly
of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent
of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys
of microbial communities associated with mosquito habitats can provide significant insight into community organization and
dynamics of bacterial species.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
3.
4.
We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition. 相似文献
5.
6.
S. Uroz M. P. Turpault C. Delaruelle L. Mareschal J.-C. Pierrat P. Frey-Klett 《Geomicrobiology journal》2013,30(1):88-98
Minerals constitute an ecological niche poorly investigated in the soil, in spite of their important role in biogeochemical cycles and plant nutrition. To evaluate the impact of minerals on the structure of the soil bacterial communities, we compared the bacterial diversity on mineral surfaces and in the surrounding soil. Three pure and calibrated minerals (apatite, plagioclase and a mix of phlogopite-quartz) were buried into the organo-mineral layer of a forest soil. After a 4-year incubation in soil conditions, mineral weathering and microbial colonization were evaluated. Apatite and plagioclase were the only two significantly weathered minerals. The analysis of the 16S rRNA gene sequences generated by the cloning-sequencing procedure revealed that bacterial diversity was higher in the surrounding soil and on the unweathered phlogopite-quartz samples compared with the other minerals. Moreover, a multivariate analysis based on the relative abundance of the main taxonomic groups in each compartments of origin demonstrated that the bacterial communities from the bulk soil differed from that colonizing the minerals. A significant correlation was obtained between the dissolution rate of the minerals and the relative abundance of Beta-proteobacteria detected. Notably, many sequences coming from bacteria colonizing the mineral surfaces, whatever the mineral, harbored high similarity with efficient mineral weathering bacteria belonging to Burkholderia and Collimonas genera, previously isolated on the same experimental site. Taken together, the present results provide new highlights concerning the bacterial communities colonizing minerals surfaces in the soil and suggests that the minerals create true ecological niches: the mineralosphere. 相似文献
7.
8.
9.
Diversity and Structure of Bacterial Communities
in Arctic versus Antarctic Pack
Ice 总被引:8,自引:4,他引:8
下载免费PDF全文

Robin Brinkmeyer Katrin Knittel Jutta Jürgens Horst Weyland Rudolf Amann Elisabeth Helmke 《Applied microbiology》2003,69(11):6610-6619
A comprehensive assessment of bacterial diversity and community composition in arctic and antarctic pack ice was conducted through cultivation and cultivation-independent molecular techniques. We sequenced 16S rRNA genes from 115 and 87 pure cultures of bacteria isolated from arctic and antarctic pack ice, respectively. Most of the 33 arctic phylotypes were >97% identical to previously described antarctic species or to our own antarctic isolates. At both poles, the α- and γ-proteobacteria and the Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups identified by cultivation as well as by molecular methods. The analysis of 16S rRNA gene clone libraries from multiple arctic and antarctic pack ice samples revealed a high incidence of closely overlapping 16S rRNA gene clone and isolate sequences. Simultaneous analysis of environmental samples with fluorescence in situ hybridization (FISH) showed that ~95% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells hybridized with the general bacterial probe EUB338. More than 90% of those were further assignable. Approximately 50 and 36% were identified as γ-proteobacteria in arctic and antarctic samples,respectively. Approximately 25% were identified as α-proteobacteria, and 25% were identified as belonging to the Cytophaga-Flavobacterium group. For the quantification of specific members of the sea ice community, new oligonucleotide probes were developed which target the genera Octadecabacter, Glaciecola, Psychrobacter, Marinobacter, Shewanella, and Polaribacter. High FISH detection rates of these groups as well as high viable counts corroborated the overlap of clone and isolate sequences. A terrestrial influence on the arctic pack ice community was suggested by the presence of limnic phylotypes. 相似文献
10.
Pabulo Henrique Rampelotto Adão de Siqueira Ferreira Anthony Diego Muller Barboza Luiz Fernando Wurdig Roesch 《Microbial ecology》2013,66(3):593-607
The Brazilian Savanna, also known as “Cerrado”, is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities. 相似文献
11.
Bacterial Communities in Central European Bumblebees: Low Diversity and High Specificity 总被引:1,自引:0,他引:1
Recent studies on the microbial flora of the honeybee gut have revealed an apparently highly specific community of resident
bacteria that might play a role in immune defence and food preservation for their hosts. However, at present, very little
is known about the diversity and ecology of bacteria occurring in non-domesticated bees like bumblebees, which are of similar
importance as honeybees for the pollination of agricultural and wild flowers. To fill this gap in knowledge, we examined six
of the most common bumblebee species in Central Europe from three locations in Germany and Switzerland for their bacterial
communities. We used a culture-independent molecular approach based on sequencing the 16S rRNA gene from a selection of individuals
and examining a larger number of samples by terminal restriction fragment length polymorphism profiles. The gut flora was
dominated by very few and mostly undescribed groups of bacteria belonging to the Proteobacteria, Bacteroidetes, Firmicutes
and Actinobacteria. This core set of bacteria was present in all of the examined bumblebee species. These bacteria are similar
to, but distinct from, bacteria previously described from the honeybee gut. Significant differences were observed between
the communities of bacteria in the different bumblebee species; the effect of sampling location was less strong. A novel group
of Betaproteobacteria additionally shows evidence for host species-specific genotypes. The gut flora of bumblebees therefore
is apparently composed of relatively few highly specialized bacteria, indicating a strong interaction and possibly important
functions with their hosts. 相似文献
12.
Diversity and Structure of Bacterial Chemolithotrophic Communities in Pine Forest and Agroecosystem Soils
下载免费PDF全文

Obligate lithotrophs (e.g., ammonia oxidizers) and facultative lithotrophs (e.g., CO and hydrogen oxidizers) collectively comprise a phylogenetically diverse functional group that contributes significantly to carbon and nitrogen cycles in soils and plays important roles in trace gas dynamics (e.g., carbon monoxide and nitrous and nitric oxides) that affect tropospheric chemistry and radiative forcing. In spite of their diverse physiologies, facultative and obligate lithotrophs typically possess the Calvin-Benson-Bassham cycle enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisCO). In an effort designed to understand the structure of lithotrophic communities in soil, genomic DNA extracts from surface (0 to 2 cm) and subsurface (5 to 7 cm) soils have been obtained from two sites in a Georgia agroecosystem (peanut and cotton plots) and an unmanaged pine stand (>50 years old). The extracts have been used in PCR amplifications of the cbbL gene for the rubisCO large subunit protein. cbbL PCR products were cloned, sequenced, and subjected to phylogenetic and statistical analyses. Numerous novel lineages affiliated with the form IC clade (one of four form I rubisCO clades), which is typified by facultative lithotrophs, comprised lithotrophic communities from all soils. One of the form IC clone sequences clustered with a form IC clade of ammonia-oxidizing Nitrosospira. Distinct assemblages were obtained from each of the sites and from surface and subsurface soils. The results suggest that lithotrophic populations respond differentially to plant type and land use, perhaps forming characteristic associations. The paucity of clone sequences attributed to ammonia-oxidizing bacteria indicates that even though ammonia oxidation occurs in the various soils, the relevant populations are small compared to those of facultative lithotrophs. 相似文献
13.
Lawrence John R. Neu Thomas R. 《Reviews in Environmental Science and Biotechnology》2003,2(2-4):85-97
The review covers aspects of biofilm cultivation, laser scanning microscopy, molecular probes and digital image analyses. This is accomplished through an overview of selected studies which illustrate the application of the microscale approach and laser microscopy techniques to the study of river biofilms and the results obtained. 相似文献
14.
Effects of Abiotic Factors on the Phylogenetic Diversity of Bacterial Communities in Acidic Thermal Springs 总被引:1,自引:0,他引:1
下载免费PDF全文

Jayanti Mathur Richard W. Bizzoco Dean G. Ellis David A. Lipson Alexander W. Poole Richard Levine Scott T. Kelley 《Applied microbiology》2007,73(8):2612-2623
Acidic thermal springs offer ideal environments for studying processes underlying extremophile microbial diversity. We used a carefully designed comparative analysis of acidic thermal springs in Yellowstone National Park to determine how abiotic factors (chemistry and temperature) shape acidophile microbial communities. Small-subunit rRNA gene sequences were PCR amplified, cloned, and sequenced, by using evolutionarily conserved bacterium-specific primers, directly from environmental DNA extracted from Amphitheater Springs and Roaring Mountain sediment samples. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and colorimetric assays were used to analyze sediment chemistry, while an optical emission spectrometer was used to evaluate water chemistry and electronic probes were used to measure the pH, temperature, and Eh of the spring waters. Phylogenetic-statistical analyses found exceptionally strong correlations between bacterial community composition and sediment mineral chemistry, followed by weaker but significant correlations with temperature gradients. For example, sulfur-rich sediment samples contained a high diversity of uncultured organisms related to Hydrogenobaculum spp., while iron-rich sediments were dominated by uncultured organisms related to a diverse array of gram-positive iron oxidizers. A detailed analysis of redox chemistry indicated that the available energy sources and electron acceptors were sufficient to support the metabolic potential of Hydrogenobaculum spp. and iron oxidizers, respectively. Principal-component analysis found that two factors explained 95% of the genetic diversity, with most of the variance attributable to mineral chemistry and a smaller fraction attributable to temperature. 相似文献
15.
16.
Effects of Plant Biomass, Plant Diversity, and Water Content on Bacterial Communities in Soil Lysimeters: Implications for the Determinants of Bacterial Diversity
下载免费PDF全文

Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches. 相似文献
17.
Ru Li Ehsan Khafipour Denis O. Krause Martin H. Entz Teresa R. de Kievit W. G. Dilantha Fernando 《PloS one》2012,7(12)
It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada’s oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation. 相似文献
18.
19.
Andrea K. Borsodi Mónika Knáb Gergely Krett Judit Makk Károly Márialigeti Anita Erőss 《Geomicrobiology journal》2013,30(7):611-627
The diversity of biofilm bacterial communities associated with cave walls of the Buda Thermal Karst System (BTKS) located in Hungary was studied by scanning electron microscopy and molecular cloning based on 16S rRNA genes. Samples from two sites, the Molnár János cave (MJB) and the Rudas-Török spring cave (RTB), respectively, were analyzed and compared. The presence of iron precipitates was typical at both study sites, despite the fact that the cell morphological structure of the biofilms observed by SEM was characteristically different. Clones analyzed from BTKS were found to belong to 10 common phyla (Thermodesulfobacteria, Chloroflexi, Nitrospirae, Chlorobi, Proteobacteria, Firmicutes, Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia) within the domain Bacteria. Moreover, sequences related to Aquificeae, Acidobacteria and Gemmatimonadetes were exclusive to MJB, while Cyanobacteria were found in RTB only. The phylogenetic distribution of the dominant bacterial clones was quite dissimilar between the two sites. In the biofilm from MJB clones affiliated with Firmicutes, whereas in the RTB clones related to Deltaproteobacteria were found in the highest number. In addition, substantially larger numbers of clone sequences related to thermophilic bacteria were recovered from MJB. On the basis of sequences of known microorganisms corresponding to our clone sequences, it is assumed that aerobic as well as anaerobic iron and sulfur transformation performed by different bacterial communities might be important biogenic processes in both caves. 相似文献
20.
Microbiology - Bacterial diversity in attached communities of the anoxic part of the Solodovka wetland (Samara region, Russia), which feeds on cold karst springs with a high (>3 mM) sulfide... 相似文献