首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the factors that affect the health of a semi-arid region's eco-economy is necessary for its sustainable development. The health evaluation, or diagnoses, of an eco-economy at the small watershed scale requires the integrated analysis of ecological, economic, and social factors, yet few studies have achieved this. The health of an eco-economy comprises three components: vigor, organization, and resilience. We use an analytic hierarchy process to develop a health evaluation index system that evaluates the health of an eco-economy system. We then use this diagnostic method to explore the factors affecting the health status of a semi-arid loess watershed in China in 2007 and 2009. The results show that between 2007 and 2009 the health status of the eco-economy improved from the “better” stage to the “benign circle” stage. The primary productivity of grassland, land productivity, rural per capita net income, number of livestock per household, input–output ratio, commodity rate of farm produce, and labor productivity were the main factors influencing the health of this eco-economy. Furthermore, this study shows that the eco-economy depends on material input from regions outside the watershed.  相似文献   

2.
This paper explores the changing political ecology of soil and water management—the articulation of physical and political-economic processes—in the Loess Plateau of north-central China. Market-oriented reforms and the shift from collective to household farming have created a diverse array of tenure, management, and financing arrangements. In the process relationships between farm households, the collective, and the state have been altered, with profound implications for land use and sustainability. The paper reviews the political ecology approach and its relevance to environmental management in China. An outline of the physical and economic context of soil erosion in the Loess Plateau is followed by examination of the impact of reform on rural environmental management. Local innovations in the organization of environmental management are highlighted. The conclusion comments on the utility of the regional political ecology approach and suggests some critical issues for further research.  相似文献   

3.
1962—2010年甘肃省黄土高原区干旱时空动态格局   总被引:2,自引:0,他引:2  
借助ArcGIS 9.3和SPSS软件平台,根据甘肃省黄土高原区33个气象站1962—2010年气象资料,利用综合气象干旱指数(CI)从干旱率、干旱强度和干旱频率三方面对甘肃省黄土高原区近50年的干旱时空变化特征进行了分析。结果表明:春、秋季干旱率呈现显著增加趋势,夏、冬季干旱率呈略微增加趋势;夏季干旱频率最大,春季、秋季次之,冬季最少;春、秋季干旱以2000年来最为严重,夏季干旱以2000年以来、20世纪70年代和90年代均较严重,冬季干旱以20世纪80年代最为严重;甘肃省黄土高原区逐年干旱持续日数和干旱强度存在明显的年际波动,线性变化趋势明显;从空间分布来看,春、夏和秋季干旱多发区主要集中在甘肃省黄土高原区西北部,而106°E以西"临洮-通渭-天水"一线和庆阳东南部是干旱多发区变幅最大的地方,冬季干旱多发区主要集中在甘肃省黄土高原区南部。  相似文献   

4.
晋西黄土区刺槐林耗水特征   总被引:3,自引:0,他引:3  
郭宝妮  张建军  王震  茹豪  黄明 《生态学杂志》2012,31(11):2736-2741
应用TDP热扩散探针技术对晋西黄土区刺槐进行了一个生长季(2011年4-10月)的野外实地定位观测,结合同步测定的大气温度、日照时数、风速等气象因子,根据相应经验公式计算了刺槐林的蒸腾耗水量和大气蒸发力,并在此基础上进行了刺槐树干液流速率与刺槐林地大气蒸发力相关性研究.结果表明:5月和8月,刺槐林地大气蒸发力和刺槐树干液流速率均具有相似的连日变化规律,夜间值均明显小于白天,晴天和雨天表现出一定的昼夜变化规律,雨天波动幅度较晴天小,阴天基本无波动.在刺槐的整个生长季(4-10月),刺槐林地大气蒸发力和刺槐树干液流流速相关性在6、7、8三个月份达到显著水平,其余月份相关性不显著,该相关性在刺槐的整个生长季呈对称性分布;刺槐林各月平均蒸腾耗水量基本呈对称分布,最小值出现在4月,最大值出现在7月,刺槐林地大气蒸发力最小值出现在10月份,4月份与其大小相当,最大值出现在6月份;刺槐林在4-10月的最大可能蒸发量是刺槐林实测蒸腾耗水量的4.45倍.  相似文献   

5.
基于2011-2012年黄土高原农牧交错带稀疏自然植被生态系统的地表能量通量以及气象数据,对该地区能量平衡各分量(净辐射、感热、潜热和土壤热通量)以及波文比进行日、季节动态的特征分析,研究了潜热通量和感热通量对不同强度降雨事件响应程度的差异,并分析了潜热通量和感热通量的主控因子.结果表明:该地区净辐射、感热、潜热和土壤热通量的日、季节动态曲线均为单峰型曲线,净辐射、感热通量、潜热通量和土壤热通量的年平均值分别为78.19、33.32、24.91和2.65 W·m-2.在全年能量收支平衡中,感热通量占净辐射的43%,潜热通量占32%,土壤热通量占3%,表明对于黄土高原农牧交错带自然稀疏灌木生态系统,全年能量主要以感热的形式交换.生长季感热和潜热占净辐射的比例相同(36%);而在非生长季,感热占主导,占净辐射的比例高达54%.潜热通量在强、弱降雨事件发生后明显升高,感热通量则明显下降.潜热通量与净辐射、水汽压差及植被参数均显著相关,感热通量与净辐射及空气温度梯度显著相关.  相似文献   

6.
陇中黄土高原油松人工林林冠截留特征及模拟   总被引:3,自引:0,他引:3  
以陇中黄土高原安家沟小流域的油松人工林为对象,于2011年生长季(5---9月)观测其林外降雨、穿透雨、树干茎流及林冠结构特征,采用修正的Gash解析模型模拟林冠截留,研究油松人工林的生态水文过程及影响机理.结果表明:研究期间共观测到19次降雨事件,总降雨量为215.80 mm,其中林冠截留48.27 mm,占总降雨量的22.4%;穿透雨165.24 mm,占同期林外降雨量的76.7%;树干茎流量2.29 mm,占同期降雨量的1.1%.模拟的林冠截留量为41.24 mm,比实测值低7.13 mm,相对误差为14.7%,其中,33.8%和60.0%截留分别在降雨期间和降雨之后蒸发.修正的Gash解析模型对林冠盖度、林冠持水能力、蒸发和雨强有较强的敏感性,而对树干茎流率和树干持水能力的敏感性不高.  相似文献   

7.
Cropland afforestation has been widely found to increase soil organic carbon (SOC) and soil total nitrogen (STN); however, the magnitudes of SOC and STN accumulation and regulating factors are less studied in dry, marginal lands, and therein the interaction between soil carbon and nitrogen is not well understood. We examined the changes in SOC and STN in younger (5–9-year-old) and older (25–30-year-old) black locust (Robinia pseudoacacia L., an N-fixing species) plantations that were established on former cropland along a precipitation gradient (380 to 650 mm) in the semi-arid Loess Plateau of China. The SOC and STN stocks of cropland and plantations increased linearly with precipitation increase, respectively, accompanying an increase in the plantation net primary productivity and the soil clay content along the increasing precipitation gradient. The SOC stock of cropland decreased in younger plantations and increased in older plantations after afforestation, and the amount of the initial loss of SOC during the younger plantations’ establishment increased with precipitation increasing. By contrast, the STN stock of cropland showed no decrease in the initial afforestation while tending to increase with plantation age, and the changes in STN were not related to precipitation. The changes in STN and SOC showed correlated and were precipitation-dependent following afforestation, displaying a higher relative gain of SOC to STN as precipitation decreased. Our results suggest that the afforestation of marginal cropland in Loess Plateau can have a significant effect on the accumulation of SOC and STN, and that precipitation has a significant effect on SOC accumulation but little effect on STN retention. The limitation effect of soil nitrogen on soil carbon accumulation is more limited in the drier area rather than in the wetter sites.  相似文献   

8.
Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.  相似文献   

9.
The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration.  相似文献   

10.
黄土高原丘陵沟壑区柠条和沙棘灌丛的降雨截留特征   总被引:3,自引:0,他引:3  
2011年5-10月,以黄土高原人工造林的主要灌木树种柠条和沙棘为对象,研究了降雨量及降雨强度对其截留量、穿透雨量和树干茎流量的影响.研究期间共观测到降雨47次,以小降雨事件为主,年降雨总量为208.9 mm,平均降雨强度为2.82 mm·h-1,其中降雨量为2~10 mm,降雨强度为0.1~2 mm·h-1的降雨事件出现次数最多.柠条和沙棘的截留量、穿透雨量、树干茎流量分别为58.5 mm、124.7 mm、25.7 mm和38.2 mm、153.1 mm、17.6 mm,分别占降雨量的28%、59.7%、12.3%和18.3%、73.3%、8.4%.柠条和沙棘的截留量、穿透雨量和树干茎流量与降雨量均呈显著正相关,并且两种灌木的截留率、穿透雨率和树干茎流率与降雨量、最大10 min雨强之间均呈指数相关或幂函数相关.  相似文献   

11.
2000-2011年黄土高原植被景观格局变化   总被引:3,自引:0,他引:3  
在RS和GIS技术的支持下,利用遥感数据MODIS NDVI提取植被覆盖度,运用景观生态学的分析方法,对黄土高原近12年不同时段(2000-2003年、2004-2007年和2008-2011年)以及夏季不同时期(初夏、盛夏和暮夏)的植被景观格局变化进行研究.结果表明:(1)近12年黄土高原的植被覆盖度在景观水平上,破碎度和复杂度在初夏时期呈先增后减的趋势;而在盛夏和暮夏时期整体趋于复杂化,景观优势度、最大斑块的聚集度降低,多样性先增后减,景观连通性无明显变化.(2)在类型水平上,年际变化主要表现为中低度、中度覆盖向中高度、高度覆盖类型的转化,而低度覆盖呈先增后减的变化趋势,变化幅度较小,约为3%~5%;季节内变化主要表现为低度覆盖持续减小,中度、高度覆盖类型在盛夏明显增大,最大增幅为9.76%,中低度覆盖类型在盛夏减小幅度最高,达13.77%,其他类型无明显变化趋势.研究结果揭示了黄土高原植被覆盖情况和景观格局变化规律,可为当地植被建设和生态环境保护提供参考.  相似文献   

12.

Aim

Root biomass has long been under-represented in biodiversity–ecosystem functioning studies, despite its dominance in biomass in many arid and semi-arid ecosystems. We aimed to explore the multivariate control over root biomass by plant diversity, together with other biotic and abiotic factors and to evaluate the relative importance of these factors.

Methods

Above- and below-ground traits of 13 communities and soil properties were measured in semi-arid grasslands on the Loess Plateau, China. Structural equation modeling (SEM) was used to evaluate the relative importance of the community and soil characteristics, emphasizing the direct and indirect effects of plant diversity on root biomass.

Results

Significant indirect effects of plant species richness on root biomass were found, although no direct correlation was detected between them. In the indirect pathways, plant species richness showed a positive effect on soil total nitrogen, but a significant negative influence on soil total carbon. Soil total nitrogen and plant diversity had the largest and smallest total effect respectively on root biomass in the model.

Conclusions

Plant species richness was not the strongest determinant of root biomass but had a significant indirect effect, mediated through soil total carbon and nitrogen. This study suggests that greater plant species richness, through a positive influence on soil total nitrogen, may indirectly promote root carbon stock.  相似文献   

13.
Serious soil erosion has resulted in widespread land degradation in the Loess Plateau of China. In the past two decades, great efforts have been made to restore degraded soil such as reconverting croplands into forestlands or grasslands. A comparison of soil qualities of different revegetation types has important implications in soil reclamation. Our study investigated the effect of different revegetation types on the physicochemical and microbial soil properties in the Loess Plateau, with the aim of determining which revegetation type has the best capacity for soil recovery. The vegetation types included two shrublands (Caragana korshinskii and Hippophae rhamnoides), two grasslands (Astragalus adsurgens and Panicum virgatum), and two species from croplands that were abandoned for natural recovery (Artemisia capillaries and Heteropappus altaicus). Among the plants studied, H. altaicus and A. capillaries had the highest values of soil organic C, total N, total P, available N, available P, moisture content, microbial biomass C (MBC), substrate-induced respiration, saccharase, urease, catalase, and peroxidase. Soil sampled from the A. adsurgens plot had the highest bulk density and microbial biomass N, and soil from the H. rhamnoides plot had the highest metabolic quotient (basal respiration/MBC). The soil quality index, which was obtained based on the available N, metabolic quotient, MBC, urease, polyphenol oxidase, and bulk density, shows that the abandoned cropland for natural recovery had the highest soil quality, followed by grassland, and then shrubland. Vegetation types affect the physicochemical and microbial properties of soils in arid climatic conditions. Abandoned cropland for natural recovery has the best capacity for improving soil quality in the Loess Plateau among all studied revegetation types. Our study suggests that in the Loess Plateau, natural recovery is the best choice for soil revegetation of sloping croplands.  相似文献   

14.
15.
Relationships between vegetation and climate on the Loess Plateau in China   总被引:3,自引:0,他引:3  
The Loess Plateau is one of the most environmentally sensitive regions in China. This study addresses the relationships between vegetation and climate of this area quantitatively at a large-scale, in order to determine the factors that control vegetation distribution. The Loess Plateau, located at 101°01′–155°10′ E and 34°02′–40°40′ N, covers an area of 52 million hectares. Vegetation data were collected from the vegetation map (1:500,000) and the Landsat Thematic Mapper scenes of the Loess Plateau. The Loess Plateau was divided into small districts of 30′ latitude by 30′ longitude on the vegetation map. In each district, areas with different vegetation were measured and used as vegetation data. The climatic data were average values of county meteorological records in each district in the past 25 years. GIS, TWINSPAN and canonical correspondence analysis (CCA) were employed for analysis. 257 small districts were clustered into 7 groups using TWINSPAN, representing 7 vegetation regions or subregions. The first three CCA axes had significant correlations with climate. The first CCA axis represented the variation of vegetation and climate along the latitude gradient, while the second CCA axis the variation along the longitude gradient. The distribution pattern of 171 vegetation formations on the CCA plot is identical to that of vegetation regions (districts). The spatial distribution of vegetation is closely related to climate variables on the Loess Plateau. Water variables and temperature are important in both latitude and longitude gradients, while the sunshine hours, accumulated temperature and wind speed are more important than water variables and temperature in longitude gradients.  相似文献   

16.
17.
黄土高原不同植物凋落物的分解特性   总被引:1,自引:0,他引:1  
以黄土高原区典型植物刺槐、小叶杨、沙棘、沙柳、苜蓿和长芒草的凋落物为对象,采用网袋法研究了半干旱区(神木)分解过程中,单种、两种及3种凋落物等质量配比混合后其质量、碳和氮的动态变化.结果表明:在整个分解过程中,不同处理凋落物的质量损失率,全碳、全氮的释放速率以及可溶性有机碳和可溶性总氮的含量均表现为前期大于后期,经过412d的分解,3种凋落物混合后的平均质量损失率高于两种混合凋落物,单种凋落物最低.到分解试验结束时,不同处理凋落物的全碳、全氮平均释放率均表现为单种>两种混合>3种混合;而不同处理的可溶性有机碳平均含量表现为两种混合>单种>3种混合,但未达到显著水平;可溶性总氮含量则为3种混合>两种混合>单种,达到显著水平.凋落物的质量损失率与可溶性有机物,特别是可溶性有机碳具有一定的相关性.从质量损失率来看,小叶杨、沙棘与苜蓿凋落物的组合为最佳组合.建议在黄土高原区退耕还林还草工程建设中,合理增加植物种类多样性,促进土壤改善养分状况.  相似文献   

18.
Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.  相似文献   

19.
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号