首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecific interactions and soil nitrogen supply levels affect intercropping productivity. We hypothesized that interspecific competition can be alleviated by increasing N application rate and yield advantage can be obtained in competitive systems. A field experiment was conducted in Wuwei, Gansu province in 2007 and 2008 to study intercropping of faba bean/maize, wheat/maize, barley/maize and the corresponding monocultures of faba bean (Vicia faba L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) with N application rates of 0, 75, 150, 225 and 300 kg N ha?1. Total land equivalent ratios (TLER) were 1.22 for faba bean/maize, 1.16 for wheat/maize, and 1.13 for barley/maize intercropping over the 2-year study period. Maize was overyielding when intercropped with faba bean, but underyielding when intercropped with wheat or barley according to partial land equivalent ratios (PLER) based on grain yields of individual crops in intercropping and sole cropping. There was an interspecific facilitation between intercropped faba bean and maize, and interspecific competition between maize and either wheat or barley. The underyielding of maize was higher when intercropped with barley than with wheat. Fertilizer N alleviated competitive interactions in intercrops with adequate fertilizer N at 225 kg ha?1. Yield advantage of intercropping can be acquired with adequate nitrogen supply, even in an intensive competitive system such as barley/maize intercropping. This is important when using intercropping to develop intensive farming systems with high inputs and high outputs.  相似文献   

2.
A field experiment was carried out to quantify biological nitrogen fixation (BNF) using the 15N isotope natural abundance method in maize (Zea mays L.)/faba bean (Vicia faba L.) and wheat (Triticum aestivum L.)/faba bean intercropping systems. Faba bean was yielding more in the maize/faba bean intercropping, but not in the wheat/faba bean intercropping. Biomass, grain yield and N acquisition of faba bean were significantly increased when intercropped with maize, and decreased significantly with wheat, irrespective of N-fertilizer application, indicating that the legume could gain or lose productivity in an intercropping situation. There was yield advantage of maize/faba bean intercropping, but no in wheat/faba bean intercropping. The grain yield of the faba bean intercropped with maize was greater than that of faba bean monoculture due to increases of the stems per plant and the pods per stem of faba bean. N fertilization inhibited N fixation of faba bean in maize/faba bean and wheat/faba bean intercropping and faba bean monoculture. The responses of different cropping systems to N-fertilizer application, however, were not identical, with competitive intercropping (wheat/faba bean) being more sensitive than facilitative intercropping (maize/faba bean). Intercropping increased the percentage of N derived from air (%Ndfa) of the wheat/faba bean system, but not that of the maize/faba bean system when no N fertilizer was applied. When receiving 120 kg N/ha, however, intercropping did not significantly increase %Ndfa either in the wheat/faba bean system or in the maize/faba bean system in comparison with faba bean in monoculture. The amount of shoot N derived from air (Ndfa), however, increased significantly when intercropped with maize, irrespective of N-fertilizer application. Ndfa decreased when intercropped with wheat, albeit not significantly at 120 kg N/ha. Ndfa was correlated more closely with dry matter yield, grain yield and competitive ratio, than with %Ndfa. This indicates that that total dry matter yield (sink strength), not %Ndfa, was more critical for the legume to increase Ndfa. The results suggested that N fixation could be improved by yield maximization in an intercropping system.  相似文献   

3.
Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha−1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha−1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs.  相似文献   

4.
Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials.  相似文献   

5.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

6.
Limited information is available about the economic benefits and costs associated with managing switchgrass (Panicum virgatum L.) produced for bioenergy feedstock in the K-deficient soils common in the southern Great Plains. The objectives of this study were to determine the most economical production system for harvesting and managing N and K fertilizations on switchgrass stands and to determine how sensitive the results are to various feedstock and fertilizer market price scenarios. A 4-year agronomic field experiment was conducted on a K-deficient site in South Central Oklahoma; the treatments included two harvest systems (summer and winter (SW) and winter only (W)), two N rates (0 and 135 kg ha?1), and two K rates (0 and 67 kg ha?1). Enterprise budgeting techniques and mixed ANOVA models were used to determine and compare the effects of eight harvest/N/K systems on yield, total cost, revenue, and net return. The harvest/N/K systems evaluated included SW/0/0, SW/0/67, SW/135/0, SW/135/67, W/0/0, W/0/67, W/135/0, and W/135/67. Results revealed the SW/135/67 system produced significantly (P?>?0.0001) greater average yield compared to the other systems; however, the SW/0/0 system was the most (P?>?0.0001) economical, realizing an average net return of $415 ha?1. Compared to the base–case net return of the SW/0/0 system, the value of the additional yield generated with the SW/135/67 system was less than the costs associated with the extra nutrients and additional harvest activity. For feedstock prices greater than $110 Mg?1, the most economical system shifted from the SW/0/0 to favor the SW/135/67 system.  相似文献   

7.
Zhang  Fusuo  Li  Long 《Plant and Soil》2003,248(1-2):305-312
This paper reviews recent research on the processes involved in the yield advantage in wheat (Triticum aestivum L.)/maize (Zea mays L.), wheat/soybean [Glycine max (L.) Merr.], faba bean (Vicia faba L.)/maize, peanut (Arachis hypogaea L.)/maize and water convolvulus (Ipomoea aquatica Forsk.)/maize intercropping. In wheat/maize and wheat/soybean intercropping systems, a significant yield increase of intercropped wheat over sole wheat was observed, which resulted from positive effects of the border row and inner rows of intercropped wheat. The border row effect was due to interspecific competition for nutrients as wheat had a higher competitive ability than either maize or soybean had. There was also compensatory growth, or a recovery process, of subordinate species such as maize and soybean, offsetting the impairment of early growth of the subordinate species. Finally, both dominant and subordinate species in intercropping obtain higher yields than that in corresponding sole wheat, maize or soybean. We summarized these processes as the `competition-recovery production principle'. We observed interspecific facilitation, where maize improves iron nutrition in intercropped peanut, faba bean enhances nitrogen and phosphorus uptake by intercropped maize, and chickpea facilitates P uptake by associated wheat from phytate-P. Furthermore, intercropping reduced the nitrate content in the soil profile as intercropping uses soil nutrients more efficiently than sole cropping.  相似文献   

8.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

9.
Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg−1, significantly higher than 61.95 mg·kg−1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg−1 in NG and GG, both were significantly higher than 314.84 mg·kg−1 in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production.  相似文献   

10.
The C4 perennial grasses Miscanthus × giganteus and Panicum virgatum (switchgrass) are emerging bioenergy crops. They are attractive because they are productive and recycle nutrients to the overwintering belowground rhizomes, before the dry shoots are harvested. They are therefore expected to require minimal fertilizer inputs, a desirable trait for any crop. Until now, Europe has had the only long-term trials of M. × giganteus, and these have either shown no or a small effect of nitrogen fertilization, while trials of P. virgatum in the USA have shown a clear positive effect of N fertilization. This study exploited the first long-term trials of M. × giganteus in the USA, and first side-by-side comparison with P. virgatum, to test the hypothesis that N fertilization would only improve yields of the latter. A split-plot N fertility treatment (0, 67, 134, and 202 kg(N)?ha?1) was added to >5-year-old replicated stands of the two crops at seven locations on contrasting soils in the US Midwest. Averaged across all locations, M. × giganteus yields increased significantly from 23.4 Mg ha?1 with no N fertilization to 28.9 Mg ha?1 (+25 %) at a N application rate of 202 kg ha?1. P. virgatum also showed significant yield increases from 10.33 Mg ha?1 at 0 kg(N)?ha?1 to 13.6 Mg ha?1 (+32 %) at 202 kg(N)?ha?1. Both species therefore responded to N fertilization and to a similar extent. The increase per unit of added N was small compared to crops such as Zea mays and unlikely to be economically worthwhile. Nitrogen fertilization arrested most of the long-term yield decline that would otherwise have occurred in P. virgatum, but eliminated only about 40 % of the decline observed in M. × giganteus, suggesting additional causal factors for long-term yield decline in this crop. While the crops responded to nitrogen addition at some locations, they did not at others. Therefore a one-case-fits-all optimum fertilization rate cannot be prescribed.  相似文献   

11.
Perennial grasses may provide a renewable source of biomass for energy production. Biomass yield, nutrient concentrations, and nutrient removal rates of switchgrass (Panicum virgatum L.), giant miscanthus (Miscanthus x giganteus), giant reed (Arundo donax L.), weeping lovegrass [Eragrostis curvula (Shrad.) Nees], kleingrass (Panicum coloratum L.), and Johnsongrass (Sorghum halepense (L.) Pers.) were evaluated at four N fertilizer rates (0, 56, 112, or 168?kg?N?ha?1) on a Minco fine sandy loam soil in southern Oklahoma. Species were established in 2008 and harvested for biomass in winter of 2009 and 2010. Biomass yield (dry matter basis) did not show a strong relationship with N fertilizer rate (p?=?0.08), but was affected by year and species interactions (p?<?0.01). Weeping lovegrass and kleingrass produced 29.0 and 16.0?Mg?ha?1 in 2009, but only 13.0?Mg?ha?1 and 9.8?Mg?ha?1 in 2010, respectively. Biomass yields of giant reed, switchgrass, and Johnsongrass averaged 23.3, 17.8, and 6.0?Mg?ha?1, respectively. Giant miscanthus established poorly, producing only 4.7?Mg?ha?1. Across years, giant reed had the highest biomass yield, 33.2?Mg?ha?1 at 168?kg?N?ha?1, and the highest nutrient concentrations and removal rates (162 to 228?kg?N?ha?1, 23 to 25?kg?P?ha?1, and 121 to 149?kg?K?ha?1) among the grasses. Although giant reed demonstrated tremendous biomass production, its higher nutrient removal rates indicate a potential for increased fertilization requirements over time. Switchgrass had consistently high biomass yields and relatively low nutrient removal rates (40 to 75?kg?N?ha?1, 5 to 12?kg?P?ha?1, and 44 to 110?kg?K?ha?1) across years, demonstrating its merits as a low-input bioenergy crop.  相似文献   

12.
Summary A super strain ofBacillus firmus (NCIM-2636) producing a phytohormone, indole-3-acetic acid, in addition to its high ability to solubilize insoluble inorganic phosphates were applied in acid soils of Nagaland, India. Rice (Oryza sativa L.) variety Jaya and IR-8 were grown in kharif season in two successive years 1980 and 1981. After proper manuring the soils received single super phosphate (S.S.P.) and Mussoorie Rock phosphate (R.P.) separately at different doses. Yield of crop in both the years increased significantly due to bacterial inoculation. Maximum grain yield was recorded in Jaya variety under S.S.P. and R.P. when treatments were at the dose of 43.75 and 17.5 kg P ha−1 respectively while the same in IR-8 variety under S.S.P. and R.P. treatments were at the dose of 35 and 17.5 kg P ha−1 respectively. Maximum straw yield was produced by Jaya variety when 35 and 43.75 kg P ha−1 in the form of S.S.P. and R.P. respectively were applied. Highest straw yield of IR-8 variety was obtained after the application of 17.5 kg P ha−1 (S.S.P. and R.P.) in combination with phosphate solubilizing bacteria. Bacterial inoculation decreased the phosphorus availability in 1 st year but increased the same in 2nd year. Phosphorus content in grains was significantly enhanced in both the trials. Maximum uptake of phosphorus by grains was noted in Jaya variety at the dose of 47.5 kg P ha−1 and in IR-8 variety at the dose of 52.5 kg P ha−1 under S.S.P. treatment, while 8.75 and 35 kg P ha−1 in the form of R.P. yielded similar results in Jaya and IR-8 varieties respectively. Phosphorus at the dose of 35 kg ha−1 was found to cause more P-uptake by straw in both S.S.P. and R.P. treatments. The various data from the experiment conclusively proved that the bacterium in combination with R.P. produced the desired effect more prominently than when bacterium applied in combination with S.S.P.  相似文献   

13.
In two field experiments in northern Sweden, we investigated if intercropping reed canary grass (RCG; Phalaris arundinacea L.) with nitrogen‐fixing perennial legumes could reduce N‐fertilizer requirements and also if RCG ash or sewage sludge could be used as a supplement for mineral P and K. We compared biomass production, N uptake and N‐fixation of RCG in monoculture and mixtures of RCG with alsike clover (Trifolium hybridum L.), red clover (Trifolium pratense L.), goat's rue (Galega orientalis Lam.) and kura clover (Trifolium ambiguum M. Bieb.). In one experiment, RCG was also undersown in barley (Hordeum vulgare L.). Three fertilization treatments were applied: 100 kg N ha?1, 50 kg N ha?1 and 50 kg N ha?1 + RCG ash/sewage sludge. We used a delayed harvest method: cutting the biomass in late autumn, leaving it on the field during the winter and harvesting in spring. The legume biomass of the mixtures at the inland experimental site was small and did not affect RCG growth negatively. At the coastal site, competition from higher amount of clover biomass affected RCG growth and spring yield negatively. N‐fixation in red clover and alsike clover mixtures in the first production year approximately covered half of recommended N‐fertilization rate. Goat's rue and kura clover did not establish well at the costal site, but at the inland site goat's rue formed a small but vital undergrowth. RCG undersown in barley gave lower yield, both in autumn and spring, than the other treatments. The high N treatment gave a higher spring yield at the inland site than the low N treatments, but there were no differences due to fertilization treatments at the coastal site. For spring harvest, there were no yield benefits of RCG/legume intercropping compared with RCG monoculture. However, intercropping might be more beneficial in a two‐harvest system.  相似文献   

14.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

15.
A recent alternative strategy to reduce environmental problems associated with P transport from agricultural soils is the use of bioenergy crops to remediate excess soil P. In addition to the positive impacts associated with P mitigation, harvested biomass used as a renewable energy source can also offset the cost associated with plant-based P remediation strategies. The objective of this study was to identify potential crop species that can be used for remediation of soil P and as a cellulosic feedstock for production of renewable energy in South Florida. Fifteen crop entries were investigated for their potential to remove P from a P-enriched soil. Dry matter (DM) yield varied among crop species with greatest yield observed for elephantgrass (Pennisetum purpureum Schum.) and sugarcane (Saccharum spp.) (43 and 39 Mg?ha?1 year?1, respectively). Similarly, greater P removal rates were observed for elephantgrass (up to 126 kg?P?ha?1 year?1 in 2008) followed by sugarcane (62 kg?P?ha?1 year?1 in 2008). Although there was no effect (P?=?0.45) of crop species on P reduction in the soil, soil P concentrations decreased linearly during the 3-year study. Because of its relatively greater DM yield and P removal rates, elephantgrass was shown to be a good candidate for remediation of excess soil P in South Florida Spodosols.  相似文献   

16.
Nitrogen economy in relay intercropping systems of wheat and cotton   总被引:3,自引:0,他引:3  
Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are applied. In this study, we analyzed the N-economy of the monocultures of cotton and wheat, and of four relay intercropping systems, differing in number of rows per strip of cotton or wheat. Field experiments were carried out from 2001/02 to 2003/04 in the Yellow River region in China. We quantified the nitrogen uptake and nitrogen use efficiency of wheat and cotton in relay intercropping systems to test if intercrops are more resource use efficient in comparison to monocrops. Nitrogen (N) yields of wheat per unit area in the four intercropping systems were lower than in the monocrop, which ranged from 203 to 288 kg ha−1. The total N-uptake per unit biomass was similar between wheat in mono- and intercrops. On average, the N-yield of cotton per unit area was lower in intercrops than in monocrops, which ranged from 110 to 127 kg ha−1, but the total N-uptake per unit biomass was higher in intercropped cotton, as dry matter production was reduced to a greater extent by intercropping than N-uptake. The N-uptake of cotton was diminished during the intercropping phase, but recovered partially during later growth stages. The physiological nitrogen use efficiency (IE) of wheat was not much affected by intercropping, but it was reduced in cotton, due to delayed flowering and less reproductive growth. Total N-efficiency of the system was assessed by comparing the relative nitrogen yield total (RNT), i.e. the sum of the ratio’s of total N-uptake by a component crop in the intercrop relative to the N-uptake in the monocrop, to the relative yield total. RNT ranged from 1.4 to 1.7, while the relative yield total (RYT) ranged from 1.3 to 1.4, indicating that intercrops used more nitrogen per unit production than monocrops. An analysis of the crop nitrogen balance showed that the nitrogen surplus of sole crops amounted to 220 kg ha−1 for wheat and 140 kg ha−1 for cotton, while in the intercropping systems, the annual N surplus exceeded 400 kg ha−1. Conventional N-management in intercrops thus results in high N-surpluses that pose an environmental risk. The N management could be improved by means of a demand-based rate and timing of N applications.  相似文献   

17.
Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg·ha−1) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m3·ha−1, 304.9 kg·ha−1 and 133.2 kg·ha−1 respectively that leads to a possible economic profit (EP) of 10548.4 CNY·ha−1 (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY·ha−1), the optimum application rates of I, N and P are 682.4 m3·ha−1, 241.0 kg·ha−1 and 111.7 kg·ha−1 respectively that produces a potential grain yield of 10289.5 kg·ha−1.  相似文献   

18.
The present study was undertaken to assess the benefit and compare the functioning of AM fungi on wheat grown conventionally and on beds. Ten treatment combinations were used, treatments 1 and 2: no fertilizers with and without arbuscular mycorrhizal (AM) fungi (In vitro produced Glomus intraradices); 3:100% of recommended NPK: (120 kg ha−1 N; 60 kg ha−1 P; 50 kg ha−1 K), and 4 and 5: 75% of recommended NPK dose with and without AM inoculation in a 5 × 2 split-plot design on wheat using conventional/flat system and elevated/raised bed system. The maximum grain yield (3.84 t ha−1) was obtained in AM fungi inoculated plots of raised bed system applied with 75% NPK and was found higher (although non- significant) than the conventional (3.73 t ha−1) system. The AM inoculation at 75% fertilizer application can save 8.47, 5.38 kg P and 16.95, 10.75 kg N ha−1, respectively, in bed and conventional system. While comparing the yield response with 100% fertilizer application alone, AM inoculation was found to save 20.30, 15.79 kg P and 40.60, 31.59 kg N ha−1, respectively, in beds and conventional system. Mycorrhizal inoculation at 75% NPK application particularly in raised bed system seems to be more efficient in saving fertilizer inputs and utilizing P for producing higher yield and growth unlike non-mycorrhizal plants of 100% P. Besides the yield, mycorrhizal plants grown on beds had higher AM root colonization, soil dehydrogenases activity, and P-uptake. The present study indicates that the inoculation of AM fungi to wheat under raised beds is better response (although non-significantly higher) to conventional system and could be adopted for achieving higher yield of wheat at reduced fertilizer inputs after field validation.  相似文献   

19.
The effect of nitrogen (N) and phosphorus (P) fertilization on composition of rhizobacterial communities of volcanic soils (Andisols) from southern Chile at molecular level is poorly understood. This paper investigates the composition of rhizobacterial communities of two Andisols under pasture after 1- and 6-year applications of N (urea) and P (triple superphosphate). Soil samples were collected from two previously established sites and the composition of rhizobacterial communities was determined by denaturing gradient gel electrophoresis (PCR–DGGE). The difference in the composition and diversity between rhizobacterial communities was assessed by nonmetric multidimensional scaling (MDS) analysis and the Shannon–Wiener index. In Site 1 (fertilized for 1 year), PCR–DGGE targeting 16S rRNA genes and MDS analysis showed that moderate N application (270 kg N ha?1 year?1) without P significantly changed the composition of rhizobacterial communities. However, no significant community changes were observed with P (240 kg P ha?1 year?1) and N–P application (270 kg N ha?1 year?1 plus 240 kg P ha?1 year?1). In Site 2 (fertilized for 6 years with P; 400 kg P ha?1 year?1), PCR–DGGE targeting rpoB, nifH, amoA and alkaline phosphatase genes and MDS analysis showed changes in rhizobacterial communities only at the highest rate of N application (600 kg N ha?1 year?1). Quantitative PCR targeting 16S rRNA genes also showed higher abundance of bacteria at higher N application. In samples from both sites, the Shannon–Wiener index did not show significant difference in the diversity of rhizobacterial communities. The changes observed in rhizobacterial communities coincide in N fertilized pastures with lower soil pH and higher pasture yields. This study indicates that N–P application affects the soil bacterial populations at molecular level and needs to be considered when developing fertilizer practices for Chilean pastoral Andisols.  相似文献   

20.
The present study was conducted to investigate the effects of nitrogen derived from dried or carbonized chicken manure on growth, nodulation, yield and N content of soybean. 15N labeled chicken manure used in this study was obtained from the droppings of chicken fed on hulled rice grown under field conditions and fertilized with 15N-labeled stable isotope ammonium sulphate and potassium nitrate fertilizers. Carbonized chicken manure was made by heat treatment in a muffle furnace in our laboratory. This study was conducted in pots filled with clay loam soil. Results from the study show that the application of carbonized chicken manure increased soybean seed yield by 23% and 43% for the 50 and 100 kg N ha−1 rates respectively. Dried chicken manure application increased soybean seed yield by 7% and 30% for the 50 and 100 kg N ha−1 rates respectively. There was no difference in the N manure yield of both manures when applied at the same rate. The percentage 15N recovery was 17.6% and 8.9% for carbonized chicken manure, 19.2% and 10.5% for dried chicken manure at 50 and 100 kg N ha−1 rates respectively at peak flowering stage of soybean growth. We found high total nitrogen yields of soybean at the rate of 100 kg N ha−1 for both manures. There was a positive relationship between number of nodules and seed yield of soybean. Total N content also showed positive relationship with number of nodules and seed yield of soybean. We supposed that the higher P content of carbonized chicken manure is responsible for the higher seed yield and nodule growth compared to dried chicken manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号