首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response to selection depends on heritable genetic variation, which is affected by environmental conditions. The present study experimentally assessed whether the effect of light-related stress and the attenuating effect of shade as a facilitator of seedling germination, survival and growth affect the expression of heritable variation and the potential for a response to selection in the columnar cactus Pilosocereus leucocephalus. A reciprocal transplant experiment combined with the artificial manipulation of light/shade conditions within greenhouses was performed using seeds from controlled crosses of two natural populations (demes PN and SI). Additive genetic variance (VA), heritability (h2) and the coefficient of variation of additive variance (CVA) were estimated for per cent of germination, per cent of seedling survival and growth (biomass) under each treatment combination. Although all three recruitment traits showed evidence of different from zero heritability, this result was highly dependent upon the particular transplant site, deme and light treatment combination. The deme that is still not locally adapted (SI) showed significant heritability for all traits and much more potential for a response selection as indicated by a higher CVA than the locally adapted deme PN. The effect of light conditions on the expression of VA, h2 and CVA depended on whether the deme was grown in its native or an alien site, but this interaction was only detected for the less adapted deme of SI. Shade conditions promoted by facilitation reduced the evolutionary potential for germination of both demes through an attenuation of genetic differences among genotypes.  相似文献   

2.
Assessing the genetic adaptive potential of populations and species is essential for better understanding evolutionary processes. However, the expression of genetic variation may depend on environmental conditions, which may speed up or slow down evolutionary responses. Thus, the same selection pressure may lead to different responses. Against this background, we here investigate the effects of thermal stress on genetic variation, mainly under controlled laboratory conditions. We estimated additive genetic variance (VA), narrow-sense heritability (h2) and the coefficient of genetic variation (CVA) under both benign control and stressful thermal conditions. We included six species spanning a diverse range of plant and animal taxa, and a total of 25 morphological and life-history traits. Our results show that (1) thermal stress reduced fitness components, (2) the majority of traits showed significant genetic variation and that (3) thermal stress affected the expression of genetic variation (VA, h2 or CVA) in only one-third of the cases (25 of 75 analyses, mostly in one clonal species). Moreover, the effects were highly species-specific, with genetic variation increasing in 11 and decreasing in 14 cases under stress. Our results hence indicate that thermal stress does not generally affect the expression of genetic variation under laboratory conditions but, nevertheless, increases or decreases genetic variation in specific cases. Consequently, predicting the rate of genetic adaptation might not be generally complicated by environmental variation, but requires a careful case-by-case consideration.Subject terms: Evolutionary genetics, Climate-change ecology, Biodiversity  相似文献   

3.
Two growth experiments were conducted with juvenile red abalone, Haliotis rufescens and Japanese abalone, Haliotis discus hannai. The first experiment was set up to determine if nutrient levels used for co-culture of the Rhodophyte, Pacific dulse (Palmaria mollis) directly affected abalone growth. No significant differences (ANOVA; P=0.117) were found in growth of abalone cultured in either ambient seawater alone or seawater supplemented with different NaNO3 loads (1176, 1765, 2353, and 2942 μM day−1 NO3-N), NaH2PO4 (83.3 μM day−1 PO4), and a modified version of Guillard and Ryther's [Gran. Can. J. Microbiol. 8, (1962) 229] f medium containing Fe, Zn, Mn, Cu, Mo, and Co.The second experiment was designed to determine the effect of different nutrient levels on the nutritional value of P. mollis when fed to abalone. P. mollis was cultured with different NaNO3 loads (1176, 1765, 2353, and 2942 μM day−1 NO3-N) and NaH2PO4 (83.3 μM day−1 PO4) in the presence or absence of f medium trace metals (Fe, Zn, Mn, Cu, Mo, and Co). H. discus hannai showed the highest LGR and SGR when fed on P. mollis supplemented with nitrate loads ranging from 1176 to 2353 μM day−1 NO3-N. In contrast, H. rufescens showed the highest linear growth rate (LGR) when fed on P. mollis supplemented with higher nitrate loads of 2353 to 2942 μM day−1 NO3-N, while nitrate load had no significant effect on specific growth rate (SGR). Both abalone species grew better on P. mollis supplied with 0.75f+Zn (day−1) metal solution [Gran. Can. J. Microbiol. 8 (1962) 229] compared to those without trace metal additions, with H. discus hannai showing a further improvement in food conversion efficiencies (FCE).The present work shows that understanding and manipulating the culture environment of P. mollis can significantly affect growth, FCE, and daily food consumption (DFC) of H. discus hannai and H. rufescens.  相似文献   

4.
Characters which are closely linked to fitness often have low heritabilities (VA/VP). Low heritabilities could be because of low additive genetic variation (VA), that had been depleted by directional selection. Alternatively, low heritabilities may be caused by large residual variation (VR=VPVA) compounded at a disproportionately higher rate than VA across integrated characters. Both hypotheses assume that each component of quantitative variation has an independent effect on heritability. However, VA and VR may also covary, in which case differences in heritability cannot be fully explained by the independent effects of elimination‐selection or compounded residual variation. We compared the central tendency of published behavioural heritabilities (mean=0.31, median=0.23) with morphological and life history data collected by 26 ). Average behavioural heritability was not significantly different from average life history heritability, but both were smaller than average morphological heritability. We cross‐classified behavioural traits to test whether variation in heritability was related to selection (dominance, domestic/wild) or variance compounding (integration level). There was a significant three‐way interaction between indices of selection and variance compounding, related to the absence of either effect at the highest integration level. At lower integration levels, high dominance variance indicated effects of selection. It was also indicated by the low CVA of domestic species. At the same time CVR increased disproportionately faster than CVA across integration levels, demonstrating variance compounding. However, neither CVR nor CVA had a predominant effect on heritability. The partial regression coefficients of CVR and CVA on heritability were similar and a path analysis indicated that their (positive) correlation was also necessary to explain variation in heritability. These results suggest that relationships between additive genetic and residual components of quantitative genetic variation can constrain their independent direct effects on behavioural heritability.  相似文献   

5.
The heritability (h2) of fitness traits is often low. Although this has been attributed to directional selection having eroded genetic variation in direct proportion to the strength of selection, heritability does not necessarily reflect a trait's additive genetic variance and evolutionary potential (“evolvability”). Recent studies suggest that the low h2 of fitness traits in wild populations is caused not by a paucity of additive genetic variance (VA) but by greater environmental or nonadditive genetic variance (VR). We examined the relationship between h2 and variance‐standardized selection intensities (i or βσ), and between evolvability (IA:VA divided by squared phenotypic trait mean) and mean‐standardized selection gradients (βμ). Using 24 years of data from an island population of Savannah sparrows, we show that, across diverse traits, h2 declines with the strength of selection, whereas IA and IR (VR divided by squared trait mean) are independent of the strength of selection. Within trait types (morphological, reproductive, life‐history), h2, IA, and IR are all independent of the strength of selection. This indicates that certain traits have low heritability because of increased residual variance due to the age at which they are expressed or the multiple factors influencing their expression, rather than their association with fitness.  相似文献   

6.
Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage.  相似文献   

7.
The heat shock protein of Toxoplasma gondii (TgHSP70) is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM)-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs) systemically, as well as the protein in the brain of resistant (BALB/c) and susceptible (C57BL/6) mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.  相似文献   

8.

Background

Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs.

Methodology

We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits.

Results/Discussion

In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QSTST are discussed.  相似文献   

9.
The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.  相似文献   

10.
E. J. Eisen 《Genetics》1975,79(2):305-323
Long-term response to within full-sib family selection for increased postweaning gain was evaluated in lines having different effective population sizes (Ne) and selection intensities (i). Line designations were I4(4), I8(2), I16(2), M4(4), M8(2) and M16(2), where I and M indicate selection of the top 50% and 25%, respectively; 4, 8 and 16 represent the number of parental pairs per replicate and number of replicates is given in parentheses. Realized within full-sib family heritabilities (hR2) in the first phase of selection (0-14 generations) were larger in 16-pair lines than in 4- and 8-pair lines. In the second phase of selection (>14 generations), hR2 declined significantly (P<.01) in all lines, and only the I16 and M16 lines had hR2 values significantly (P<.01) greater than zero. Realized genetic correlations involving number born, 12-day litter weight, weaning weight and six-week weight tended to decline in the second phase of selection. The I16, M16 and control (C16) replicates were crossed in all combinations at generation 14. Crosses were then selected within litters for high postweaning gain. The hR2 values in the crossbred lines were all larger than those in the second selection phase for M16-1, M16-2 and I16-1, but not for I16-2. Within each Ne level, total response was significantly (P<.01) less for I lines compared with M lines. Total response increased as Ne increased, within each level of i. Relatively small differences in realized i values among Ne lines could not account for this result. The difference in total response among the Ne lines at a given selection intensity may be due to inbreeding depression and a combination of interactions involving "drift" and selection. By crossing replicates of the M lines with the C16 control, the effects of inbreeding depression were removed. Inbreeding depression and genetic drift, as defined herein, were equally important in accounting for differences among Ne lines in total response.  相似文献   

11.
Heat shock protein 70 (HSP70), the primary member of HSPs that are responsive of thermal stress, is found in all multicellular organisms and functions mostly as molecular chaperon. The inducible HSP70 cDNA cloned from Pacific abalone (Haliotis discus hannai) using rapid amplification of cDNA ends (RACE), was highly homologous to other HSP70 genes. The full-length cDNA of the Pacific abalone HSP70 was 2631bp, consisting of a 5'-terminal untranslated region (UTR) of 90bp, a 3'-terminal UTR of 573bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1968bp. The HSP70 cDNA encoded a polypeptide of 655 amino acids with an ATPase domain of 382 amino acids, the substrate peptide binding domain of 161 amino acids and a C-terminus domain of 112 amino acids. The temporal expression of HSP70 was measured by semi-quantitative RT-PCR after heat shock and bacterial challenge. Challenge of Pacific abalone with heat shock or the pathogenic bacteria Vibrio anguillarum resulted in a dramatic increase in the expression of HSP70 mRNA level in muscle, followed by a recovery to normal level after 96h. Unlike the muscle, the levels of HSP70 expression in gills reached the top at 12h and maintained a relatively high level compared with the control after thermal and bacterial challenge. The upregulated mRNA expression of HSP70 in the abalone following heat shock and infection response indicates that the HSP70 gene is inducible and involved in immune response.  相似文献   

12.
In order to further illuminate the potential role of dominant genetic variation in the “missing heritability” debate, we investigated the additive (narrow-sense heritability, h2) and dominant (δ2) genetic variance for 18 human complex traits. Within the same study base (10,682 Swedish twins), we calculated and compared the estimates from classic twin-based structural equation model with SNP-based genomic-relatedness-matrix restricted maximum likelihood [GREML(d)] method. Contributions of δ2 were evident for 14 traits in twin models (average δ2twin = 0.25, range 0.14–0.49), two of which also displayed significant δ2 in the GREMLd analyses (triglycerides δ2SNP = 0.28 and waist circumference δ2SNP = 0.19). On average, the proportion of h2SNP/h2twin was 70% for ADE-fitted traits (for which the best-fitting model included additive and dominant genetic and unique environmental components) and 31% for AE-fitted traits (for which the best-fitting model included additive genetic and unique environmental components). Independent evidence for contribution from shared environment, also in ADE-fitted traits, was obtained from self-reported within-pair contact frequency and age at separation. We conclude that despite the fact that additive genetics appear to constitute the bulk of genetic influences for most complex traits, dominant genetic variation might often be masked by shared environment in twin and family studies and might therefore have a more prominent role than what family-based estimates often suggest. The risk of erroneously attributing all inherited genetic influences (additive and dominant) to the h2 in too-small twin studies might also lead to exaggerated “missing heritability” (the proportion of h2 that remains unexplained by SNPs).  相似文献   

13.
Obesity has been associated with impaired immune responses and inflammation. The mechanisms underlying these immune disturbances in obesity are not yet clarified. This study investigated the effects of in vitro heat shock (HS) on immune cells from the point of view of thymocyte apoptosis and T-cell mitogen-stimulated splenocyte cytokine production as well as the heat shock protein 70 (HSP70) protein levels in diet-induced obese mice to explore a possible association between the disturbance of T cell immunity and HS response in obesity. Obese mice had increased apoptotic and necrotic thymocytes populations and increased splenocyte cytokine production of both proinflammatory and anti-inflammatory cytokines compared with lean mice. The in vitro HS at 42 °C decreased the rate of live cells in thymocytes, and the degree of the decrease was larger in obese mice compared with lean mice. The in vitro HS increased the intracellular and extracellular HSP70 protein levels in thymocytes and splenocytes, while the effects of obesity on the HSP70 protein levels were not obvious. The in vitro HS prior to T cell mitogen stimulation decreased IFN-γ and IL-10 production by mitogen-stimulated splenocytes. This change in cytokine production due to HS was not affected by obesity. The obvious alteration of the HSP70 protein levels and association between cytokine production and the HS response in obesity were not found in this obesity model; however, our results indicate an association between the viability of thymocytes and an altered HS response in obesity and provide evidence that the increase in thymocyte apoptosis and acceleration of thymus involution in obesity could be, in part, due to the alteration of the HS response.  相似文献   

14.
15.
Reproductive and life span traits were measured for two obligately parthenogenetic (Artemia parthenogenetica) and three sexual (two A. franciscana and one A. sinica) brine shrimp populations. For each population, clonal lineages or single mating pairs were followed through one life cycle. The relative contributions of environmental and genetic components to total phenotypic variation for 10 life-history traits in response to environmental stress (0, 10, 25 ppb Cu) were estimated. Within treatment variation (CVW) was 39% higher for sexual populations than parthenogenetic populations, with significant (p<0.05) differences in total number of offspring and number of nauplii. CVA (the change in variance due to rearing in different environments), when averaged for all traits and all populations, increased variability by 9.9%. CVA was 44.2% higher for sexual than parthenogenetic populations, with significant differences in number of broods, total number of offspring, and number of nauplii. The average genetic component of variation for the 10 traits was 23.44%, ranging from 5.26% for number of cysts to 44.87% for number of nauplii. For all traits, the environmental component of variance is greater than the genetic component measured, but every trait has a genetic component, which can potentially be acted upon by selection.  相似文献   

16.
Although there is substantial evidence that skeletal measures of body size are heritable in wild animal populations, it is frequently assumed that the nonskeletal component of body weight (or ‘condition’) is determined primarily by environmental factors, in particular nutritional state. We tested this assumption by quantifying the genetic and environmental components of variance in fledgling body condition index (=relative body weight) in a natural population of collared flycatchers (Ficedula albicollis), and compared the strength of natural selection on individual breeding values with that on phenotypic values. A mixed model analysis of the components of variance, based on an ‘animal model’ and using 18 years of data on 17 717 nestlings, revealed a significant additive genetic component of variance in body condition, which corresponded to a narrow sense heritability (h2) of 0.30 (SE=0.03). Nongenetic contributions to variation in body condition were large, but there was no evidence of dominance variance nor of contributions from early maternal or common environment effects (pre‐manipulation environment) in condition at fledging. Comparison of pre‐ and post‐selection samples revealed virtually identical h2 of body condition index, despite the fact that there was a significant decrease (35%) in the levels of additive genetic variance from fledging to breeding. The similar h2 in the two samples occurred because the environmental component of variance was also reduced by selection, suggesting that natural selection was acting on both genotypic and environmental variation. The effects of selection on genetic variance were confirmed by calculation of the selection differentials for both phenotypic values and best linear unbiased predictor (BLUP) estimates of breeding values: there was positive directional selection on condition index both at the phenotypic and the genotypic level. The significant h2 of body condition index is consistent with data from human and rodent populations showing significant additive genetic variance in relative body mass and adiposity, but contrasts with the common assumption in ecology that body condition reflects an individual’s nongenetic nutritional state. Furthermore, the substantial reduction in the additive genetic component of variance in body condition index suggests that selection on environmental deviations cannot alone explain the maintenance of additive genetic variation in heritable traits, but that other mechanisms are needed to explain the moderate to high heritabilities of traits under consistent and strong directional selection.  相似文献   

17.
There are different views of how the immune system participates in the reaction to cancer. Here, we evaluated expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in patients with hepatocellular carcinoma (HCC) and lung cancer to explore tumor immunity. Our analysis showed that levels of HSP70 and SPAG9 antibody were significantly higher in the serum of lung cancer and HCC patients than in the serum of healthy subjects (P < 0.001), but there were no differences in levels of HSP70 antibody in patients and controls. Levels of serum SPAG9 antibody in newly diagnosed lung cancer patients were significantly higher than in treated lung cancer patients (P < 0.05), but there were no differences in levels of HSP70 or HSP70 antibody. Levels of serum HSP70 and SPAG9 antibody, but not HSP70 antibody, were also higher in hepatitis/cirrhosis patients than in healthy subjects (P = 0.005, P < 0.001). Levels of serum SPAG9 antibody were significantly higher in HCC patients than in hepatitis/cirrhosis patients, but there were no differences in HSP70 or HSP70 antibody levels. Finally, levels of serum HSP70 and SPAG9 antibody were significantly higher in HCC patients than in lung cancer patients (P < 0.05, P < 0.001). These results indicate that cancer-testis antigen SPAG9 induces a strong humoral immune response in cancer patients but HSP70 does not. These results show that SPAG9 has potential as a tumor-specific biomarker.  相似文献   

18.
Realized heritability (h 2) of resistance to dicrotophos in greenhouse whitefly,Trialeurodes vaporariorum Westwood, was estimated from a laboratory selection experiment. Five generations of selection increased the LC50 approximately 13-fold. Estimatedh 2 of resistance to dicrotophos was 0.40 when calculated with the method of Tabashnik (1992) and 0.35 with the method of Tanaka & Noppun (1989). These results suggest that 35 to 40% of the total phenotypic variation in resistance was caused by additive genetic variation. For thirteen previously reported estimates ofh 2 of insecticide resistance in other insect pests, the mean was 0.29. The relatively highh 2 of dicrotophos resistance forT. vaporariorum is consistent with rapid resistance development in field populations.  相似文献   

19.
A new 2-thioquinazolinones series was designed and synthesized as HSP90 inhibitors based on the structure of hit compound VII obtained by virtual screening approach. Their in vitro anti-proliferative activity was evaluated against three human cancer cell lines rich in HSP90 namely; colorectal carcinoma (HCT-116), and cervical carcinoma (Hela), breast carcinoma (MCF-7). Compounds 5a, 5d, 5e and 9h showed a significant broad spectrum anti-proliferative activity against all tested cell lines. They were characterized by potent effect against breast cancer in particular with IC50 of 11.73, 8.56, 7.35 and 9.48 μM, respectively against Doxorubicin (IC50 4.17 μM). HSP90 ATPase activity inhibition assay were conducted where compound 5d exhibited the best IC50 with 1.58 μM compared to Tanespimycin (IC50 = 2.17 μM). Compounds 5a and 9h showed higher IC50 values of 3.21 and 3.41 μM, respectively. The effects of 5a, 5d and 9h on Her2 (a client proteins of HSP90) and HSP70 were evaluated in MCF-7 cells. All tested compounds were found to reduce Her2 protein expression levels and induce Hsp70 protein expression levels significantly, emphasizing that antibreast cancer effect is a consequence of HSP90 chaperone inhibition. Cell cycle analysis of MCF-7 cells treated with 5d showed cell cycle arrest at G2/M phase 38.89% and pro-apoptotic activity as indicated by annexin V-FITC staining by 22.42%. Molecular docking studies suggested mode of interaction to HSP90 via hydrogen bonding. ADME properties prediction of the active compounds suggested that they could be used as orally absorbed anticancer drug candidates.  相似文献   

20.
Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET) scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV 2). The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CVr 2) for comparison with our estimate of noise-free or ‘true’ heterogeneity (CV t 2). We found that CV t 2 was only 5.4% higher than CV r 2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using 13NN-saline injection. The mean CV t 2 was 0.10 (range: 0.03–0.30), while the mean CV 2 including noise was 0.24 (range: 0.10–0.59). CV t 2 was in average 41.5% of the CV 2 measured including noise (range: 17.8–71.2%). The reproducibility of CV t 2 was evaluated using three repeated PET scans from five subjects. Individual CV t 2 were within 16% of each subject''s mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV t 2 in PET scans, and may be useful for similar statistical problems in experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号