首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The human skin equivalent (HSE) is an in vitro reconstructed model that resembles skin morphologically and biochemically. The HSE is formed by overlaying a fibroblast-populated collagen matrix with a suspension of epidermal cells. Basal keratinocytes attach to the dermal equivalent via a newly formed basement membrane and multiply to form a stratified, differentiated epidermis. The aim of the studies described here was to characterize the basal cells of the HSE in terms of their cell cycling potential. The experiments utilized long-term labelling of the cells with tritiated thymidine ([3H]dT), followed by irradiation with ultraviolet light. [3H]dT incorporation was analysed via routine autoradiography. Irradiation with 100 J/m2 UV light increased the number of labelled basal cells by 58% over the control, the maximal stimulation observed. Decreased numbers of labelled basal cells were observed at doses of UV light greater than 100 J/m2. The maximal number of labelled basal cells was observed on day 14 and decreased over time; the number of labelled suprabasal cells increased concomitantly. Label-retaining cells (12%) persisted in the stratum basale of control HSEs after 32 days in culture. Labelled cells were observed in the apical layers of the stratum granulosum of control HSEs after 22 days in culture. These data suggest that the stratum basale of the HSE contains a population of slow-cycling cells whose characteristics resemble a subpopulation of slowly cycling cells found in normal human skin.  相似文献   

2.
Human skin equivalents (HSEs) are three‐dimensional living models of human skin that are prepared in vitro by seeding cells onto an appropriate scaffold. They recreate the structure and biological behaviour of real skin, allowing the investigation of processes such as keratinocyte differentiation and interactions between the dermal and epidermal layers. However, for wider applications, their optical and mechanical properties should also replicate those of real skin. We therefore conducted a pilot study to investigate the optical properties of HSEs. We compared Monte Carlo simulations of (a) real human skin and (b) two‐layer optical models of HSEs with (c) experimental measurements of transmittance through HSE samples. The skin layers were described using a hybrid collection of optical attenuation coefficients. A linear relationship was observed between the simulations and experiments. For samples thinner than 0.5 mm, an exponential increase in detected power was observed due to fewer instances of absorption and scattering.   相似文献   

3.
4.
An in vitro model was used to investigate the effect of mechanical stimuli on adaptation to load and calcium signaling in aligned medial collateral ligament cells (MCL). This model used a patterned silicone membrane to align the cells parallel with the direction of the microgrooves. Alignment created an architecture that simulated a degree of cell orientation in native ligament tissue. It was hypothesized that aligned ligament cells would be more efficient at calcium wave propagation than cells that were randomly oriented. It was further hypothesized that calcium wave propagation would be greater among cells that were both aligned and subjected to mechanical stretch compared to cells that were aligned but not stretched. Rat MCL cells were loaded with Fura-2AM, a calcium-binding dye, and mechanically indented using a micropipette tip. A ratio-imaging fluorescence technique was used to quantitate the calcium (Ca2+) response. It was concluded that stretching ligament cells prior to stimulation increased their sensitivity to load and their ability to propagate a calcium wave. However, the ability of aligned cells to propagate this wave was not significantly different when compared to nonaligned cells. Treatment of cultures with inhibitors such as apyrase and suramin significantly reduced the number of cells recruited in the calcium response. Hence, it was concluded that ATP released from mechanically stimulated cells was a principal mediator responsible for the rise in intracellular calcium in ligament cells. Further, purinoceptor activation may amplify the signal to alert and recruit more cells in a response to mechanical stimulation.  相似文献   

5.
周期应变对动脉平滑肌细胞分泌血管紧张素II的影响   总被引:1,自引:0,他引:1  
应用自行设计的硅胶膜伸张加载装置对培养硅胶膜上的Wistar大鼠主动脉平滑肌细胞施以周期性二维伸张应变,运用放射免疫沉淀法对其Ag11的分泌量进行测定,结果表明:加载组血管紧张素Ⅱ分泌量明显高于对照组,对照组分泌曲线较平坦,而加载组曲线较尖锐;加载4h,AgⅡ分泌量达到峰值。  相似文献   

6.
C3d,g is present in normal human epidermal basement membrane   总被引:4,自引:0,他引:4  
mAb as well as polyclonal anti-human C3d antibodies were found to specifically bind to the epidermal basement membrane zone of normal human adult and neonatal skin in a linear continuous pattern on direct immunofluorescence microscopy. No such binding was found in dermal microvascular basement membranes. Studies of normal adult human skin using a rat mAb specific for C3g revealed the same pattern of epidermal basement membrane staining. Control polyclonal antibodies directed against C3, C3c, C5, IgG, IgA, or IgM showed no evidence of epidermal basement membrane binding or in situ deposits of immune complexes in samples of normal human skin that were all positive for C3d and C3g. Pre-adsorption of monoclonal or polyclonal anti-human C3d with purified human C3d completely blocked these reagents' epidermal basement membrane reactivity. Anti-human C3d epidermal basement membrane binding was not diminished by pre-treatment of substrate with antibodies directed against C3, C3c, C5, laminin, fibronectin, or type IV collagen as well as bullous pemphigoid, KF-1, or epidermolysis bullosa acquisita Ag. Direct immunofluorescence microscopy studies on 1 M NaCl split human skin showed that C3d and C3g were found in the base of the cleavage plane created within the lamina lucida. By immunoelectron microscopy, C3d was found along the base of the lamina densa and in the sublamina densa region of normal human epidermal basement membrane. Although anti-human C3d epidermal basement membrane binding was not altered by treatment of 6 micron skin sections with buffers of varying pH and ionic concentration, binding was abolished by treating dermal portions of salt split skin with 0.1 M dithiothreitol in 8 M urea. Studies of a patient with congenital C3 deficiency revealed that there was no binding of anti-human C3d or anti-human C3g to this subject's epidermal basement membrane. Moreover, treatment of this patient's skin with aged human serum containing C3d,g or purified human C3 did not restore epidermal basement membrane anti-human C3d binding. These studies demonstrate that C3d,g or a closely related C3 fragment is present in the epidermal basement membrane zone of normal human skin.  相似文献   

7.
Treatment of patients with burn wound infections may become complicated by the presence of antibiotic resistant bacteria and biofilms. Herein, we demonstrate an in vitro thermal wound infection model using human skin equivalents (HSE) and biofilm-forming methicillin-resistant Staphylococcus aureus (MRSA) for the testing of agents to combat such infections. Application of a liquid nitrogen-cooled metal device on HSE produced reproducible wounds characterized by keratinocyte death, detachment of the epidermal layer from the dermis, and re-epithelialization. Thermal wounding was accompanied by up-regulation of markers for keratinocyte activation, inflammation, and antimicrobial responses. Exposure of thermal wounded HSEs to MRSA resulted in significant numbers of adherent MRSA/HSE after 1 hour, and multiplication of these bacteria over 24-48 hours. Exposure to MRSA enhanced expression of inflammatory mediators such as TLR2 (but not TLR3), IL-6 and IL-8, and antimicrobial proteins human β-defensin-2, -3 and RNAse7 by thermal wounded as compared to control HSEs. Moreover, locally applied mupirocin effectively reduced MRSA counts on (thermal wounded) HSEs by more than 99.9% within 24 hours. Together, these data indicate that this thermal wound infection model is a promising tool to study the initial phase of wound colonization and infection, and to assess local effects of candidate antimicrobial agents.  相似文献   

8.
Evidence suggests that cellular responses to mechanical stimuli depend specifically on the type of stimuli imposed. For example, when subjected to fluid shear stress, endothelial cells align along the flow direction. In contrast, in response to cyclic stretching, cells align away from the stretching direction. However, a few aspects of this cell alignment response remain to be clarified: (1) Is the cell alignment due to actual cell reorientation or selective cell detachment? (2) Does the resulting cell alignment represent a response of the cells to elongation or shortening, or both? (3) Does the cell alignment depend on the stretching magnitude or rate, or both? Finally, the role of the actin cytoskeleton and microtubules in the cell alignment response remains unclear. To address these questions, we grew human aortic endothelial cells on deformable silicone membranes and subjected them to three types of cyclic stretching: simple elongation, pure uniaxial stretching and equi-biaxial stretching. Examination of the same cells before and after stretching revealed that they reoriented. Cells subjected to either simple elongation or pure uniaxial stretching reoriented specifically toward the direction of minimal substrate deformation, even though the directions for the two types of stretching differed by only about 20°. At comparable stretching durations, the extent of cell reorientation was more closely related to the stretching magnitude than the stretching rate. The actin cytoskeleton of the endothelial cell subjected to either type of stretching was reorganized into parallel arrays of actin filaments (i.e., stress fibers) aligned in the direction of the minimal substrate deformation. Furthermore, in response to equi-biaxial stretching, the actin cytoskeleton was remodeled into a “tent-like” structure oriented out of the membrane plane—again towards the direction of the minimal substrate deformation. Finally, abolishing microtubules prevented neither the formation of stress fibers nor cell reorientation. Thus, endothelial cells respond very specifically to the type of deformation imposed upon them.  相似文献   

9.
The structure of the epidermis of Travisia forbesii was described using light and electron microscopy. The epidermis is a highly modified variant of the normal one-layer polychaete epithelium. It consists of basal epidermal cells and an external layer of closely sited papillae consisting of glandular and supportive epidermal cells, and extensive electron-transparent intercellular spaces. The papillae are embedded in the thick cuticle. Each papilla has a peduncle, which is formed by one cell that penetrates the inner cuticle layer to the basal epidermal cells. A fold of basement membrane forms the core of the peduncle and ends in the base of a papilla. All epidermal cells are connected to each other with apical cell junctions and to the basement membrane with hemidesmosomes, so the epithelium is continuous and uninterrupted. The epidermis has an intra-epidermal neuron plexus. The structure of the papillae is compared with papillae and tubercles of other polychaetes, and the possible functional significance and phylogenetic implications of these structures are discussed.  相似文献   

10.
Cultured rat bladder smooth muscle cells (SMC) were grown oncollagen-coated silicone membranes and subjected to continuous cyclesof stretch-relaxation. Semiquantitative RT-PCR analysis revealed atime-dependent increase in heparin-binding epidermal growth factor(EGF)-like growth factor (HB-EGF) mRNA levels after stretch, withmaximal levels appearing after 4 h. Immunostaining for proHB-EGFrevealed higher levels of HB-EGF protein in the stretched than in thenonstretched SMC. The ANG II receptor type 1 antagonist losartanmarkedly suppressed stretch-activated HB-EGF expression. ANG II levelswere 3.3-fold higher in the stretch- than in thenon-stretch-conditioned media. Stretch stimulation of bladder SMC thathad been transiently transfected with an HB-EGF promoter-luciferaseexpression construct resulted in an 11-fold increase in reporteractivity. Mechanical stretch induced a 4.7-fold increase in tritiatedthymidine incorporation rate, and this was reduced by 25% in thepresence of losartan. We conclude that mechanical stretch activatesHB-EGF gene expression in bladder SMC and that this is mediated in partby autocrine ANG II secretion.

  相似文献   

11.
An experimental model has been devised to permit morphologic and metabolic characterization of cells subjected to a range of cyclic mechanical stimuli similar to those which may prevail in blood vessel walls. A unique feature is the use of purified elastin membranes prepared from bovine aortas as extensible substrates for cell growth. Cells attached firmly to such membranes which could then be subjected to continuous stretching and relaxation or displacement without stretching by a motor coupled to a movable supporting frame. Various combinations of frequencies, amplitudes and rates of deformation have been used over extended periods with minimal fatigue or disruption of the elastin substrate. The effects of cyclic stretching on [14C]proline incorporation into protein and collagen and [3H]thymidine incorporation into DNA by rabbit aortic smooth muscle cells were distinct from those attributable to agitation without stretching, indicating that cells responded differently to these modes of stimulation. Increases in rate of protein or DNA synthesis induced by stretching were just as marked after 48 h of stimulation as they were at the outset of an experimental period. Since the system permits observations of cell response to independently variable components of pulsatile stress over extended periods and under a variety of culture conditions, it may be expected to provide new data concerning the interaction of mechanical with hormonal and genetic factors in the elaboration of connective tissue components.  相似文献   

12.
Frozen human cadaver skin obtained from the skin bank was thawed and incubated in serum-free medium for 1–2 days, after which the original epidermis could be removed mechanically. Transmission electron microscopic observations showed that the dermal matrix remaining behind contained intact bundles of collagen fibrils but no live cells and that a continuous lamina densa persisted in the basement membrane region. Indirect immunofluorescence analyses demonstrated linear staining of the basement membrane region by antibodies against laminin and type IV collagen and discontinuous staining with antibodies against fibronectin. Scanning electron microscopic observations revealed a normal topographical arrangement of dermal matrix papilla and interspersed crypts on the surface of the matrix. Epidermal cells placed on the dermal matrix attached in 1–2 h and spread by 24 h. After 1 week of culture the epidermis was reconstituted, at which time approximately 30% of the epidermal cells were basal keratinocytes and the remainder were more differentiated keratinocytes. A high degree of differentiation of the reconstituted epidermis was shown by the formation of hemidesmosomes along the basement membrane, the formation of desmosomes characterized by intercellular dense lines, and the presence of a cell layer containing keratohyalin granules. At various times during epidermal reconstitution, cells were harvested and tested in short-term assays for adhesion to fibronectin substrata. During the first several days there was a transient activation of basal keratinocyte spreading analogous to the modulation of keratinocyte spreading that we have observed during epidermal reconstitution in vivo.  相似文献   

13.
A model system was used to determine the effect of stretch on prostacyclin (PGI) production by organotypic fetal rat lung cultures grown on gelatin foam in vitro, measured by RIA of 6-keto-PGF1α (6KF) in the culture medium. The stretching apparatus was programmable for stretch of varying frequency and duration. The effective stimuli for PGI production were: continuous pulsatile stretch> intermittent pulsatile stretch> permanent stretch (p<0.05). The rate of PGI production was greatest in the first 15min of pulsatile stretch and was associated with a 70% increase in cAMP production (p < 0.05). When the effect of magnitude of stretch was compared (15% vs 28% extension), there was a significant increase with a maximum in the 28% stretch group double that of the 15% stretch group (p<0.01). PGI production in response to pulsatile stretching was inhibited by indomethacin but not by pretreatment with cortisol. These results suggest that the production of PGI by lung cells may be significantly affected by the frequency and magnitude of pulsatile stretching.  相似文献   

14.
A model system was used to determine the effect of stretch on prostacyclin (PGI) production by organotypic fetal rat lung cultures grown on gelatin foam in vitro, measured by RIA of 6-keto-PGF1 alpha (6KF) in the culture medium. The stretching apparatus was programmable for stretch of varying frequency and duration. The effective stimuli for PGI production were: continuous pulsatile stretch greater than intermittent pulsatile stretch greater than permanent stretch (p less than 0.05). The rate of PGI production was greatest in the first 15 min of pulsatile stretch and was associated with a 70% increase in cAMP production (p less than 0.05). When the effect of magnitude of stretch was compared (15% vs 28% extension), there was a significant increase with a maximum in the 28% stretch group double that of the 15% stretch group (p less than 0.01). PGI production in response to pulsatile stretching was inhibited by indomethacin but not by pretreatment with cortisol. These results suggest that the production of PGI by lung cells may be significantly affected by the frequency and magnitude of pulsatile stretching.  相似文献   

15.
One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca2+ concentration ([Ca2+]i) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca2+]i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca2+]i. The stretch-induced [Ca2+]i elevation was attenuated in Ca2+-free solution. In contrast, the increase of [Ca2+]i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd3+, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca2+]i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.  相似文献   

16.
Mechanical stretch has been implicated as the growth stimuli in the heart. Physiologically, mechanical stretch is reported to contribute to the orientation of cardiomyocytes, though the molecular mechanism remains to be elucidated. This study was designed to make clear functional significances of N-cadherin in plasticity of cell alignment in response to mechanical stretch. Neonatal rat cardiomyocytes, cultured on silicone dishes, were subjected to artificial uniaxial cyclic stretch. Mechanical stretch was started at certain times (3-75 h) after seeding and continued for 24 h. Stretch stimulation in 3 h after cultivation promoted cell orientation running parallel to tension direction. In contrast, cardiac myocytes fail to align when exposed to stretch 24-75 h after cultivation. To address the importance of N-cadherin in the responsiveness to stretch, the expression and distribution of N-cadherin were analyzed. Immediately after seeding, N-cadherin showed dispersed distributions. During cultivation, N-cadherin localized to cell-cell contacts accompanied by the upregulation of its protein. Next, to investigate influence of cell-cell adhesion, cardiomyocytes cultured for 72 h were replated by trypsin treatment and exposed to stretch 3 h after replating. The cardiomyocytes replated by trypsinization were oriented in parallel to tension direction by mechanical stretch. Finally, adenoviral transfection of dominant-negative N-cadherin recovered the ability to exhibit cell orientation in response to stretch. Our results suggested that N-cadherin was involved in the oriented responses of cardiomyocytes induced by mechanical stretch.  相似文献   

17.
Mouse epidermal cells can be subcultured at 31°C onto an irradiated BALB/c 3T3 clone A31 feeder layer. A31 cells (supposedly derived from embryonic fibroblasts) were found to be specifically required for the optimal production of keratinizing epidermal colonies in secondary culture. This effect was not transmitted through the medium nor by the culture surface, since A31 cells plated on one end of a flask did not stimulate epidermal cell proliferation at the other end, even if the other end had previously held A31 cells. Epidermal cell contact with metabolizing A31 cells was probably necessary for the effect; fixed or freeze-thawed A31 cells were ineffective. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate, recently shown to interfere with contact-mediated transfer of label (metabolic cooperation) between Swiss 3T3 cells and cells of an established epidermal line in vitro, also blocked epidermal colony formation. The A31-epidermal cell interaction is apparently not a typical mesenchymal-epithelial interaction, since the basement membrane would prevent this contact in intact skin.  相似文献   

18.
Quiescent rat glomerular mesangial cells were exposed to repeated cycles of stretching and relaxation, and the effects on the rate of collagen production, proliferation, and S6 kinase activity were investigated. Stretch/relaxation induced increases in production of both collagen and non-collagenous proteins. Proliferation of mesangial cells was stimulated by stretch/relaxation and epidermal growth factor, but not by angiotensin II; however, administration of angiotensin II augmented stretch/relaxation-induced cell proliferation. Cytosolic S6 kinase activity was stimulated by stretch/relaxation, angiotensin II, epidermal growth factor, or phorbol 12-myristate 13-acetate. The increased S6 kinase activity was detectable within 30 min after initiation of stretch/relaxation and was blocked by either inhibitors of protein kinase C or prior down-regulation of protein kinase C following prolonged incubation with phorbol 12-myristate 13-acetate. Both translocation of protein kinase C from the cytosolic to the membrane fraction and phosphorylation of an endogenous 80-kDa protein were observed within 5 min of initiation of stretch/relaxation. These results demonstrate that in mesangial cells, mechanical factors alone can induce increases in production of collagen and non-collagenous proteins and in cell proliferation. The observation that stretch/relaxation induced stimulation of S6 kinase activity through protein kinase C-dependent mechanisms suggests that activation of protein kinase C may be a key event in initiating adaptive responses of mesangial cells to increased workload.  相似文献   

19.
Mechanical stretch has been implicated as the growth stimuli in the heart. Physiologically, mechanical stretch is reported to contribute to the orientation of cardiomyocytes, though the molecular mechanism remains to be elucidated. This study was designed to make clear functional significances of N-cadherin in plasticity of cell alignment in response to mechanical stretch. Neonatal rat cardiomyocytes, cultured on silicone dishes, were subjected to artificial uniaxial cyclic stretch. Mechanical stretch was started at certain times (3-75h) after seeding and continued for 24h. Stretch stimulation in 3h after cultivation promoted cell orientation running parallel to tension direction. In contrast, cardiac myocytes fail to align when exposed to stretch 24-75h after cultivation. To address the importance of N-cadherin in the responsiveness to stretch, the expression and distribution of N-cadherin were analyzed. Immediately after seeding, N-cadherin showed dispersed distributions. During cultivation, N-cadherin localized to cell-cell contacts accompanied by the upregulation of its protein. Next, to investigate influence of cell-cell adhesion, cardiomyocytes cultured for 72h were replated by trypsin treatment and exposed to stretch 3h after replating. The cardiomyocytes replated by trypsinization were oriented in parallel to tension direction by mechanical stretch. Finally, adenoviral transfection of dominant-negative N-cadherin recovered the ability to exhibit cell orientation in response to stretch. Our results suggested that N-cadherin was involved in the oriented responses of cardiomyocytes induced by mechanical stretch.  相似文献   

20.
Understanding microstructural changes that occur in skin subjected to repetitive mechanical stress is crucial towards the development of therapies to enhance skin adaptation and load tolerance in patients at risk of skin breakdown (e.g. prosthesis users, wheelchair users). To determine if collagen fibril diameter, collagen fibril density, dermal thickness, epidermal thickness, basement membrane length, and dermal cell density changed in response to repetitive stress application, skin subjected to moderate cyclic compressive and shear stresses for 1 h/d, 5 d/week, for 4 week was compared with skin from an unstressed contralateral control. The lateral aspects of the hind limbs of 12 Landrace/Yorkshire pigs were used. Skin from under the stressed site and a contralateral control site was processed for electron microscopy and light microscopy analysis. Electron microscopy results demonstrated significant (p<0.01) increases in collagen fibril diameter of 15.9%, 22.4%, and 22.9% for the upper, mid, and lower layers of the dermis, respectively, for the stressed skin compared with the control skin. Collagen fibril density (fibrils/unit cross-sectional area) decreased significantly for stressed vs. control by 19.8%, 29.2%, and 31.8% for the upper, mid, and lower layers, respectively. Light microscopy results demonstrated trends of a decrease in dermal thickness and an increase in cell density for stressed vs. control samples, but the differences were not significant. Differences in epidermal thickness and basement membrane length were not significant. These results demonstrate that quantifiable changes occur in collagen fibril architecture but not in the gross tissue morphology following in vivo cyclic loading of pig skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号