首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

2.
The sulfhydryl-selective alkylating agent, N-ethylmaleimide (NEM), has been used as a tool to discern whether different binding domains exist on the neuronal serotonin (5-HT) transporter for 5-HT and 5-HT uptake inhibitors (Reith, M. E. A., Allen, D. L., Sershen, H., and Lajtha, A. (1984) J. Neurochem. 43, 249-255; Graham, D., Esnaud, H., Habert, E., and Langer, S. Z. (1989) Biochem. Pharmacol. 38, 3819-3826). However, relatively high concentrations of NEM and long incubation times have been required for inactivation of the transporter-binding site which raises the possibility that NEM is reacting with other nucleophilic groups (Smyth, D. G., Blumenfeld, O. O., and Konigsberg, W. (1964) Biochem. J. 91, 589-595). In the present work, the reactivity and essential nature of sulfhydryl groups associated with substrate/inhibitor binding to the neuronal 5-HT transporter was assessed. [3H]Paroxetine, a potent and selective 5-HT uptake inhibitor, was used to label the 5-HT transporter. The effects of a relatively wide range of sulfhydryl reagents on [3H]paroxetine binding in digitoninsolubilized preparations of rat brain neuronal membranes and the relative abilities of different classes of drugs to protect against NEM-induced inactivation of [3H]paroxetine binding were studied. It was observed that digitonin-solubilized preparations were more sensitive than membrane preparations to the inactivating effects of NEM. The pKa of the reactive group was estimated to be 6.17, in the range expected for a reactive sulfhydryl. Sulfhydryls essential to ligand binding reacted preferentially with hydrophobic compounds (p-hydroxymercuribenzoate = dithiobisnitrobenzoate > methyl methanethiosulfonate > N-phenylmaleimide > N-ethylmaleimide) and were unreactive toward hydrophilic reagents such as iodoacetate and iodoacetamide. 5-HT, 5-HT uptake inhibitors and cocaine protected the digitonin-solubilized transporter from NEM-induced inactivation while the amphetamine-related releasing agents p-chloroamphetamine and fenfluramine were ineffective. The observation that the binding of some, but not all, ligands requires reduced sulfhydryl groups, suggests that differential mechanisms and/or different binding domains do exist for agents which interact at the neuronal 5-HT transporter.  相似文献   

3.
Deletion-mutants of the cloned mouse serotonin transporter (SERT) rendered dominant negative-mutant effects upon wild-type transporter activities in heterologous expression studies; such effects were transporter-selective and did not influence the activities of co-expressed neuronal GABA transporter. Heterologous expression of linear concatenates (up to four copies) of SERT further revealed discernable uptake activities for both transporter-dimer and -tetramer, but not for the trimer. Kinetic and pharmacological analyses revealed that the monomer, dimer, and tetramer manifested comparable transport Kmand potencies for known serotonin uptake inhibitors; the tetramer was distinct from the others only in manifesting notably reduced transport Vmax. Surprisingly, equivalent cocaine congener-binding activities were observed for all concatenates, including the functionally inactive trimer. These findings collectively support the existence of quaternary structure in the active 5-HT transport complex; such structure is likely to be a critical determinant of ligand transport activities, but apparently not of transporter–inhibitor interactions.  相似文献   

4.
Clearance rates for serotonin (5-HT) in heterozygote (+/-) and homozygote (-/-) serotonin transporter (5-HTT) knockout (KO) mice have not been determined in vivo. Moreover, the effect of selective serotonin reuptake inhibitors (SSRIs) on 5-HT clearance in these mice has not been examined. In this study, the rate of clearance of exogenously applied 5-HT was measured in the CA3 region of the hippocampus of anesthetized mice using high-speed chronoamperometry. Compared with wild-type mice, the maximal rate of 5-HT clearance from extracellular fluid (ECF) was decreased in heterozygotes and more markedly so in KO mice. Heterozygote mice were more sensitive to the 5-HT uptake inhibitor, fluvoxamine, resulting in longer clearance times for 5-HT than in wild-type mice; as expected, the KO mice were completely unresponsive to fluvoxamine. There were no associated changes in norepinephrine transporter density, nor was there an effect of the norepinephrine uptake inhibitor, desipramine, on 5-HT clearance in any genotype. Thus, adaptive changes in the norepinephrine transport system do not occur in the CA3 region of hippocampus as a consequence of 5-HTT KO. These data highlight the potential of the heterozygote 5-HTT mutant mice to model the dynamic in vivo consequences of the human 5-HTT polymorphism.  相似文献   

5.
The localization of binding sites for [3H]indalpine to sections of rat brain was studied by a quantitative autoradiographic technique. Binding sites for this specific neuronal 5-hydroxytryptamine (5-HT) uptake inhibitor are concentrated in areas rich in 5-HT neuronal cell bodies, fibers, and synaptic terminals. One of the most interesting features of this regional distribution is the very high density of these sites found in the dorsal raphe, substantia nigra, ventral tegmental area, and locus ceruleus. Components of the visual system also show pronounced labelling with [3H]indalpine. The finding that limbic structures are strongly labelled by this drug may be related to the antidepressant activity of indalpine. The anatomical distribution of binding sites demonstrated is consistent with the specific labelling of 5-HT neurons by [3H]indalpine and confirms previous studies carried out with another 5-HT uptake inhibitor, [3H]imipramine.  相似文献   

6.
The sodium dependence of binding of [3H]-paroxetine, a selective serotonin uptake inhibitor, to the serotonin transporter in rat diencephalon was studied in both brain membranes and tissue sections and compared with that of 5-[3H]hydroxytryptamine ([3H]5-HT) uptake by synaptosomes from the same region. Binding of [3H]-paroxetine in both the membranes and sections displayed clear sodium dependence until a plateau occurring at 60 nM NaCl, the EC50 for sodium being 8 and 25 mM, respectively. The affinity (1/KD) of [3H]paroxetine binding was a simple hyperbolic function of sodium concentration. In contrast, the density of [3H]paroxetine sites was not affected by external Na+ concentration. The uptake of [3H]5-HT showed a similar pattern of sodium dependence with an EC50 for Na+ of 25 mM. Both the affinity (1/Km) and the rate (Vmax) of [3H]5-HT uptake were dependent on external [Na+] with sodium-dependence curves fitting a rectangular hyperbola. The kinetic analysis of results indicates that one sodium ion is required for the binding of [3H]paroxetine as well as for the binding and translocation of each [3H]5-HT molecule. The results concur with a single-site model of the sodium-dependent serotonin transporter with common or overlapping domains for 5-HT and 5-HT uptake inhibitors.  相似文献   

7.
To test the hypothesis that the hyperpyrexia produced by meperidine and detromethorphan in rabbits pretreated with a monoamine oxidase inhibitor is related to inhibition of neuronal uptake of serotonin (5-hydroxytryptamine (5-HT)), fluoxetine (Lilly 110140) was studied. This potent and specific 5-HT neuronal uptake blocker was administered to phenelzine-pretreated rabbits and found to produce a lethal hyperpyrexia in doses equal to or greater than 2.5 mg/kg. The order of potency in blocking 5-[14C]HT uptake into synaptosomes prepared from rabbits was: fluoxetine greater than meperidine = dextromethorphan = levorphanol greater than anileridine greater than alphaprodine greater than morphine. Since fluoxetine, meperidine, and dextromethorphan produce hyperpyrexia in phenelzine-pretreated rabbits, whereas anileridine, alphaprodine, and morphine do not, there appears to be some correlation between the hyperpyrexic response and inhibition of 5-HT uptake. The exception is levorphanol, which is not hyperpyrexic despite being equipotent with meperidine and dextromethorphan in inhibiting 5-HT uptake. The ineffectiveness of levorphanol in producing hyperpyrexia may be due to its marked depressant properties, since the addition of another depressant drug (pentobarbital) antagonized the hyperpyrexic effect of meperidine.  相似文献   

8.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

9.
10.
We investigated the characteristics of cocainelike binding sitesin rat placenta using[125I]RTI-55.[3H]paroxetine bindingand immunocytochemical staining for serotonin [5-hydroxytryptamine (5-HT)] and for the 5-HT transporterwere also used to obtain evidence for rat placental 5-HT uptake.[125I]RTI-55saturation analyses with membranes from normal gestational day 20 placentas yielded curvilinear Scatchard plots that were resolved intohigh- and low-affinity components (mean dissociation constants of 0.29 and 7.9 nM, respectively). Drug competition studies with variousmonoamine uptake inhibitors gave rise to complex multiphasicdisplacement curves, although the results obtained with the selective5-HT uptake inhibitor citalopram suggest that the 5-HT transporter isan important component of placental high-affinity[125I]RTI-55 binding.The presence of a rat placental 5-HT uptake system was additionallysupported by the[3H]paroxetine bindingexperiments and by the presence throughout the placenta ofimmunoreactivity for 5-HT and the 5-HT transporter. Immunostaining withboth antibodies was most intense in the junctional zone, whereas thedensity of[125I]RTI-55 bindingsites was greater in the placental labyrinth. This discrepancy may bedue to the fact that[125I]RTI-55 appearsto be labeling additional cellular components besides the 5-HTtransporter. The presence of cocaine- and antidepressant-sensitive 5-HTtransporters in the placenta has important implications for thepossible effects of these compounds on pregnancy and fetal development.

  相似文献   

11.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A 68-kDa glycoprotein bearing the biological activity of the plasma membrane serotonin (5-hydroxytryptamine, 5-HT) transporter has been purified from human blood platelets, a classical cell model for the study of 5-HT uptake. After treatment of the whole platelet population or its plasma membrane fraction by sulfhydryl-dependent bacterial protein toxins or by digitonin, purification was reproducibly obtained by a one-step affinity chromatography using two different columns with 5-HT or 6-fluorotryptamine as ligands and elution by 5-HT or Na(+)-free buffer. The purified fraction migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band with an apparent molecular mass of 68 kDa and exhibited an apparent isoelectric point of 5.6-6.2. Two sialic acid residues were detected in the purified material. The purified glycoprotein bound the 5-HT uptake blocker [3H]paroxetine with a Kd (0.25 nM) similar to the one observed for intact human platelets. It also bound [3H] 5-HT but neither [3H]hydroxytetrabenazine nor [3H] ouabain, the respective markers of the granular monoamine transporter and of the Na+,K(+)-ATPase associated to the plasma membrane 5-HT transporter. 5-HT derivatives and 5-HT uptake inhibitors exhibited similar Ki values for 5-HT uptake and paroxetine binding in intact human platelets and in the purified glycoprotein. Under laser UV irradiation, 40% of this purified glycoprotein could be labeled by either [3H]paroxetine or [3H]cyanoimipramine. No labeling was detected with either [3H] gamma-aminobutyric acid or [3H]GBR 12783, the respective markers of gamma-aminobutyric acid and dopamine carriers. The purified 68-kDa protein is therefore likely to correspond at least to the binding domain of the 5-HT transporter located at the human platelet plasma membrane.  相似文献   

13.
14.
Human embryonic kidney 293 cells stably transfected with the rat plasmalemmal serotonin transporter (rSERT) were incubated with 5-[3H]hydroxytryptamine ([3H]5-HT) and superfused. Substrates of the rSERT, such as p-chloroamphetamine (PCA) or methylenedioxymethamphetamine, concentration-dependently increased basal efflux of [3H]5-HT. 5-HT reuptake blockers (e.g., imipramine, citalopram) also caused an enhancement of [3H]5-HT efflux, reaching about half the maximal effect of the rSERT substrates. In uptake experiments, both groups of substances concentration-dependently inhibited 5-HT uptake. EC50 values obtained in superfusion experiments significantly correlated with IC50 values from uptake studies (r2 = 0.92). Addition of the Na+,K(+)-ATPase inhibitor ouabain (100 microM) to or the omission of K+ from the superfusion buffer accelerated basal efflux. The effect of PCA (10 microM) was markedly enhanced by both measures, whereas the effect of uptake inhibitors remained unchanged. When [3H]MPP+, a substrate with low affinity for the rSERT, was used instead of [3H]5-HT for labeling the cells, uptake inhibitors failed to augment efflux. By contrast, PCA accelerated [3H]MPP+ efflux, and its effect was strongly enhanced in the presence of ouabain. The results suggest that the [3H]5-HT efflux caused by substrates of rSERT is carrier-mediated, whereas efflux induced by uptake inhibitors is a consequence of interrupted high-affinity reuptake that is ongoing even under superfusion conditions.  相似文献   

15.
The nature of interaction between the site labeled by [3H]imipramine (IMI) and the 5-hydroxytryptamine (5-HT, serotonin) transporter in human platelets was examined. The sulfhydryl characterizing agent N-ethylmaleimide (NEM) differentially affected [3H]5-HT uptake and [3H]IMI binding in human platelet preparations. Concentrations of NEM that completely abolished [3H]5-HT uptake only minimally reduced [3H]IMI binding. Examining the effect of IMI on the kinetics of human platelet [3H]5-HT uptake revealed significant reductions in maximal velocity (Vmax) without altering affinity (Km). IC50 values for selected uptake blockers on [3H]IMI binding and [3H]5-HT uptake were determined. IC50 values of these compounds for uptake and binding revealed that agents such as IMI, chlorpromazine, amitriptyline, and nisoxetine were preferential inhibitors of [3H]IMI binding whereas fluoxetine, CL 216, 303, pyrilamine, and bicifadine were preferential [3H]5-HT uptake blockers. 5-HT was a weak displacer of [3H]IMI binding (IC25 = 3.0 microM) and exhibited a rather low Hill coefficient (nH app = 0.46). Results reported herein support the notion of an allosteric interaction between the [3H]IMI binding site and the 5-HT transporter complex in human platelets.  相似文献   

16.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

17.
The serotonergic system may play a role during general anesthesia but the effect of the volatile anesthetic halothane on the release of serotonin (5-HT) is not fully understood. Rat brain cortical slices were labeled with [3H]5-HT to investigate the effects of halothane on the release of this neurotransmitter from the central nervous system. Halothane induced an increase on the release of [3H]5-HT that was dependent on incubation time and anesthetic concentration (0.006, 0.012, 0.024, 0.036, 0.048 and 0.072 mM). This effect was independent of extracellular calcium and was not affected by tetrodotoxin (blocker of voltage dependent Na+ channels). In contrast, the halothane-evoked [3H]5-HT release was reduced by BAPTA-AM, a membrane-permeable BAPTA analog that chelates intracellular Ca2+. The anesthetic-induced [3H]5-HT release depends on the ryanodine-sensitive intracellular calcium store since it was blocked by dantrolene and azumolene (inhibitors of the calcium-release through ryanodine receptors) but was not affected by aminoethoxydiphenylborate (2-APB), an inhibitor of inositol 1,4,5-triphosphate receptor. The [3H]5-HT release induced by halothane comes mainly from the vesicular pool since it was reduced in about 70% by reserpine, a blocker of vesicular monoamine transporter. The halothane-evoked release of [3H]5-HT release is reduced by fluoxetine, an inhibitor of 5-HT uptake, and the volatile agent also decreased the uptake of [3H]5-HT into rat brain cortical slices. Moreover, a decrease on halothane-induced release of [3H]5-HT was also observed when the brain cortical slices were incubated at low temperature, which is known to interfere with the carrier-mediated release of the neurotransmitter. Ouabain, a Na+/K+ ATPase pump inhibitor, which induces 5-HT release through reverse transport, also decreased [3H]5-HT release induced by halothane, confirming the involvement of a carrier-mediated release of the neurotransmitter in the presence of halothane. In conclusion, these data suggest that halothane induces vesicular and carrier-mediated release of [3H]5-HT in rat brain cortical slices.  相似文献   

18.
Dysregulation of glycogen synthase kinase (GSK)-3β contributes to the pathophysiology of mood disorders. However, how its regulation is responsible for the functioning of serotonin (5-HT) requires further investigation. Although enhancement of T-cell function may present an alternative strategy to treat depression, the precise mechanisms have yet to be established. Our previous studies have found that interferon-alpha (IFN-α) up-regulates serotonin transporter (5-HTT) expression and induces 5-HT uptake in T cells. The present study is to examine GSK-3β regulation on IFN-α-induced 5-HTT functions. GSK-3β short hairpin RNAs (shRNAs) or GSK-3β inhibitors decreased IFN-α-induced 5-HT uptake and 5-HTT expression. Src activation and calcium/calcium-activated calmodulin kinase II (CaMKII) were involved in IFN-α-induced phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) (Tyr402) and GSK-3β (Tyr216), which regulated 5-HT uptake. GSK-3β knockdown blocked the IFN-α-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 (Thr202/Tyr204) and signal transducer and transactivator (STAT) 1. In addition to inhibiting ERK, a selective 5-HTT inhibitor fluoxetine blocked IFN-α-induced activations of Src, CaMKII-regulated Pyk2/GSK-3β cascade, as well as STAT1 activation and translocation. These results indicated that calcium/CaMKII- and Src-regulated Pyk2 participated in IFN-α-induced GSK-3β activation and GSK-3β-regulated 5-HT uptake. GSK-3β signaling facilitated IFN-α-activated STAT1 by regulating ERK1/2, which controlled 5-HT uptake. Fluoxetine interfered with the Pyk2/GSK-3β cascade, thereby inhibiting IFN-α-induced 5-HT uptake.  相似文献   

19.
The activity of the dopamine transporter is an important mechanism for the maintenance of normal dopaminergic homeostasis by rapidly removing dopamine from the synaptic cleft. In kidney-derived COS-7, COS-1 and HEK-293 but not in other mammalian cell lines (CHO, Y1, Ltk-), we have characterized a putative functional dopamine transporter displaying a high affinity (Km approximately 250 nM) and a low capacity (approximately 0.1 pmol/10(5) cells/min) for [3H]dopamine uptake. Uptake displayed a pharmacological profile clearly indicative of the neuronal dopamine transporter. Estimated Ki values of numerous substrates and inhibitors for the COS-dopamine transporter and the cloned human neuronal transporter (human dopamine transporter) correlate well with the exception of a few notable compounds, including the endogenous neurotransmitter dopamine, the dopamine transporter inhibitor GBR 12,909 and the dopaminergic agonist apomorphine. As with native neuronal and cloned dopamine transporters, the uptake velocity was sodium-sensitive and reduced by phorbol ester pre-treatment. Two mRNA species of 3.8 and 4.0 kb in COS-7 cells were revealed by Northern blot analysis similar in size to that seen in native neuronal tissue. A reverse-transcribed PCR analysis confirmed the existence of a processed dopamine transporter. However, no immunoreactive proteins of expected dopamine transporter molecular size or [3H]WIN 35,428 binding activity were detected. A partial cDNA of 1.3 kb, isolated from a COS-1 cDNA library and encoding transmembrane domains 1-6, displayed a deduced amino acid sequence homology of approximately 96% to the human dopamine transporter. Taken together, the data suggest the existence of a non-neuronal endogenous high affinity dopamine uptake system sharing strong functional and molecular homology to that of the cloned neuronal dopamine transporter.  相似文献   

20.
There is evidence from recent studies that the brain endothelium (of capillaries and/or larger vessels) may serve as a specific target for serotonin [5-hydroxytryptamine (5-HT)]. This neurotransmitter is expected to be involved in the regulation of the blood-brain barrier (BBB) permeability and/or of the cerebral blood flow via receptor-mediated mechanisms. Effective control of these processes depends on a speedy uptake and metabolism of released 5-HT molecules. To realize this, a similar mechanism of 5-HT uptake as in brain may exist at the BBB. In this study, we have demonstrated using RT-PCR that 5-HT transporter mRNA is present in the brain endothelium and that a saturable transport system for 5-HT is functionally expressed in immortalized rat brain endothelial cells (RBE4 cells). These cells take up [3H]5-HT by an active saturable process with a Km value of 397 +/- 64 nmol/L and a transport capacity of 51.7 +/- 3.5 pmol x g(-1) x min(-1). The 5-HT uptake depends on Na+, as indicated by the replacement of NaCl by LiCl. The 5-HT uptake was sensitive to specific 5-HT transport inhibitors such as paroxetine, clomipramine, fluoxetine, and citalopram but not to inhibitors of the vesicular amine transporter such as reserpine or tetrabenazine. Our results demonstrate that cerebral endothelial cells are able to participate actively in the removal and metabolism of the released 5-HT, which supports the concept of direct serotoninergic regulation of the BBB function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号