首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
 The Drosophila gene Serrate encodes a membrane spanning protein, which is expressed in a complex pattern during embryogenesis and larval stages. Loss of Serrate function leads to larval lethality, which is associated with several morphogenetic defects, including the failure to develop wings and halteres. Serrate has been suggested to act as a short-range signal during wing development. It is required for the induction of the organising centre at the dorsal/ventral compartment boundary, from which growth and patterning of the wing is controlled. In order to understand the regulatory network required to control the spatially and temporally dynamic expression of Serrate, we analysed its cis-regulatory elements by fusing various genomic fragments upstream of the reporter gene lacZ. Enhancer elements reflecting the expression pattern of endogenous Serrate in embryonic and postembryonic tissues could be confined to 26 kb of genomic DNA, including 9 kb of transcribed region. Expression in some embryonic tissues is under the control of multiple enhancers located in the 5’ region and in intron sequences. The data presented here provide the tools to unravel the genetic network which regulates Serrate during different developmental stages in diverse tissues. Received: 27 March 1998 / Accepted: 17 May 1998  相似文献   

4.
5.
6.
In mammals, the Transforming Growth Factor-beta (TGF-beta) superfamily controls a variety of developmental processes. In Drosophila, by contrast, a single member of the superfamily, decapentaplegic (dpp) performs most TGF-beta developmental functions. The complexity of dpp functions is reflected in the complex cis-regulatory sequences that flank the gene. Dpp is divided into three regions: Hin, including the protein-coding exons; disk, including 3' cis-regulatory sequences; and shortvein (shv), including noncoding exons and 5' cis-regulatory sequences. We analyzed the cis-regulatory structure of the shortvein region using a nested series of rearrangement breakpoints and rescue constructs. We delimit the molecular regions responsible for three mutant phenotypes: larval lethality, wing venation defects, and head capsule defects. Multiple overlapping elements are responsible for larval lethality and wing venation defects. However, the area regulating head capsule formation is distinct, and resides 5' to these elements. We have demonstrated this by isolating and describing two novel dpp alleles, which affect only the adult head capsule.  相似文献   

7.
Human alpha 1-antitrypsin (AAT) is expressed in the liver, and a 318 bp fragment immediately flanking the CAP site of the gene was found to be sufficient to drive the expression of a reporter gene (CAT) specifically in hepatoma cells. The enhancing activity however, was orientation-dependent. The DNA fragment was separated into a distal region and a proximal region. A "core enhancer" sequence GTGGTTTC is present within the distal region and is capable of activity enhancement in both orientations when complemented by the proximal region in the sense orientation. The results strongly suggest that there are multiple cis-acting elements in the human AAT gene that confer cell specificity for its expression. Nuclear proteins prepared from the hepatoma cells bound specifically to the proximal region in a band-shifting assay that was resistant to competition by the globin promoter DNA. Foot-printing analysis showed a protected domain within the proximal region that contains a nearly perfect palindromic sequence TGGTTAATATTCACCA, which may be important in the regulation of AAT expression in the liver.  相似文献   

8.
The regulatory sequences of the Drosophila ACP65A cuticle gene were analyzed in vivo in transgenic flies, using both fusion genes constructs and transposase-mediated deletions within a P element containing ACP65A regulatory sequences fused to the lacZ gene (deletion scanning). The sequences located between -594 and +161 are sufficient to confer both temporal and spatial expression specificities, indicating the presence of tissue-specific enhancers and response elements to hormone-induced factors. In addition, timing of expression and tissue-specificity appear to be controlled by distinct cis-regulatory elements, which suggests the existence of independent hormonal and tissue-specific signaling pathways. Gain and loss of function studies also implicate DHR38, the Drosophila homolog of the vertebrate NGFI-B-type nuclear receptors, as an important activator of the ACP65A gene.  相似文献   

9.
10.
11.
12.
The BMP pathway patterns the dorsal region of the Drosophila embryo. Using an antibody recognizing phosphorylated Mad (pMad), we followed signaling directly. In wild-type embryos, a biphasic activation pattern is observed. At the cellular blastoderm stage high pMad levels are detected only in the dorsal-most cell rows that give rise to amnioserosa. This accumulation of pMad requires the ligand Screw (Scw), the Short gastrulation (Sog) protein, and cleavage of their complex by Tolloid (Tld). When the inhibitory activity of Sog is removed, Mad phosphorylation is expanded. In spite of the uniform expression of Scw, pMad expansion is restricted to the dorsal domain of the embryo where Dpp is expressed. This demonstrates that Mad phosphorylation requires simultaneous activation by Scw and Dpp. Indeed, the early pMad pattern is abolished when either the Scw receptor Saxophone (Sax), the Dpp receptor Thickveins (Tkv), or Dpp are removed. After germ band extension, a uniform accumulation of pMad is observed in the entire dorsal domain of the embryo, with a sharp border at the junction with the neuroectoderm. From this stage onward, activation by Scw is no longer required, and Dpp suffices to induce high levels of pMad. In these subsequent phases pMad accumulates normally in the presence of ectopic Sog, in contrast to the early phase, indicating that Sog is only capable of blocking activation by Scw and not by Dpp.  相似文献   

13.
14.
15.

Background

Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences.

Results

We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates.

Conclusion

We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号