首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Nash D  Janca FC 《Genetics》1983,105(4):957-968
In a small region of the X chromosome of Drosophila melanogaster, we have found that a third of the mutations that appear to act as lethals in segmental haploids are viable in homozygous mutant individuals. These viable mutations fall into four complementation groups. The most reasonable explanation of these mutations is that they are a subset of functionally hypomorphic alleles of essential genes: hypomorphic mutations with activity levels above a threshold required for survival, but below twice that level, should behave in this manner. We refer to these mutations as "haplo-specific lethal mutations." In studies of autosomal lethals, haplo-specific lethal mutations can be included in lethal complementation tests without being identified as such. Accidental inclusion of disguised haplo-specific lethals in autosomal complementation tests will generate spurious examples of interallelic complementation.  相似文献   

2.
Twenty-one X-linked recessive lethal and sterile mutations balanced by an unlinked X-chromosome duplication have been identified following EMS treatment of the small nematode, Caenorhabditis elegans. The mutations have been assigned by complementation analysis to 14 genes, four of which have more than one mutant allele. Four mutants, all alleles, are temperature-sensitive embryonic lethals. Twelve mutants, in ten genes, are early larval lethals. Two mutants are late larval lethals, and the expression of one of these is influenced by the number of X chromosomes in the genotype. Two mutants are maternal-effect lethals; for both, oocytes made by mutant hermaphrodites are rescuable by wild-type sperm. One of the maternal-effect lethals and two larval lethals are allelic. One mutant makes defective sperm. The lethals and steriles have been mapped by recombination and by complementation testing against 19 deficiencies identified after X-ray treatment. The deficiencies divide the region, about 15% of the X-chromosome linkage map, into at least nine segments. The deficiencies have also been used to check the phenotypes of hemizygous lethal and sterile hermaphrodites.  相似文献   

3.
Mary L. Alexander 《Genetics》1975,81(3):493-500
The mutation rate was determined for mature sperm at eight specific gene loci on the third chromosome of Drosophila melanogaster using the low ion density radiations of 22 Mev betatron X-rays. A dose of 3000 rads of betatron X-rays produced a mutation rate of 4.36 x 10-8 per rad/locus. Among the mutations observed, 66% were recessive lethals and 34% viable when homozygous. Only one of the 24 viable mutations was associated with a chromosome aberration. Among the 47 recessive lethals, no two-break aberrations were detected in 48.9% of the lethals, deletions were associated with 42.2%, inversions with 6.7% and translocations with 2.2%.—When these genetic results are compared to those for 250 KV X-rays, the mutation rate for betatron treatments was slightly lower (.76), the recessive lethal rate among induced mutations was higher, and the chromosome aberrations among lethal mutations were slightly lower than with 250 KV X-rays. Although the two types of irradiations differ by an ion density of approximately ten, the amount and types of inheritable genetic damage induced by the two radiations in mature sperm were not significantly different.  相似文献   

4.
The acetylcholinesterase of Lepidoptera insects is encoded by two genes, ace1 and ace2. The expression of the ace1 gene is significantly higher than that of the ace2 gene, and mutations in ace1 are one of the major reasons for pesticide resistance in insects. In order to investigate the effects of the mutations in ace1’s characteristic sites on pesticide resistance, we generated mutations for three amino acids using site-directed mutagenesis, which were Ala(GCG)303Ser(TCG), Gly(GGA)329Ala(GCA) and Leu (TCT)554Ser(TTC). The Baculovirus expression system was used for the eukaryotic expression of the wild type ace1 (wace1) and the mutant ace1 (mace1). SDS-PAGE and Western blotting were used to detect the targeting proteins with expected sizeof about 76 kDa. The expression products were purified for the determination of AChE activity and the inhibitory effects of physostigmine and phoxim. We observed no significant differences in the overall activity of the wild type and mutant AChEs. However, with 10 min of physostigmine (10 μM) inhibition, the remaining activity of the wild type AChE was significantly lower than that of the mutant AChE. Ten min inhibition with 33.4 μM phoxim also resulted in significantly lower remaining activity of the wild type AChE than that of the mutant AChE. These results indicated that mutations for the three amino acids reduced the sensitivity of AChE to physostigmine and phoxim, which laid the foundation for future in vivo studies on AChE’s roles in pesticide resistance.  相似文献   

5.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

6.
Stephen H. Bryant 《Genetics》1980,95(4):1023-1031
A chromosome 2 lethal allelism rate of about 3% was found in the 1974 population of D. pseudoobscura in Death Valley, California. This rate was significantly higher than allelism rates in other Southern California populations. The Death Valley population was sampled again in 1975 and 1977, with allelism rates of 1% and 0.5%, respectively. In 1974, several lethals were in high frequencies (about 1%), a pattern that reappeared in 1975 and 1977. However, none of the lethals in high frequency one year were in high frequency another year; the particular lethal alleles present in this ephemeral population appear to be due to their random presence in the flies which refound the population every winter. The results for the Death Valley population are compared with a Japanese population of D. melanogaster in which lethals in high frequency one year are also in high frequency in succeeding years and with earlier work on chromosome 3 of D. pseudoobscura, which showed a lower lethal frequency and higher allelism rate.  相似文献   

7.
The mutations (G228S, A391T and F439W) and duplication of the acetylcholinesterase (AChE) gene (Tuace) are involved in monocrotophos resistance in the two-spotted spider mites, Tetranychus urticae (Kwon et al., 2010a, Kwon et al., 2010b). The overexpression of T. urticae AChE (TuAChE) as a result of Tuace duplication was confirmed in several field-collected populations by Western blotting using an AChE-specific antibody. To investigate the effects of each mutation on the insensitivity and fitness cost of AChE, eight variants of TuAChE were expressed in vitro using the baculovirus expression system. Kinetic analysis revealed that the G228S and F439W mutations confer approximately 26-fold and 99-fold increases in the insensitivity to monocrotophos, respectively, whereas the insensitivity increased over 1165-fold in the AChE with double mutations. Nevertheless, the presence of these mutations reduced the catalytic efficiency of AChE significantly. In particular, the TuAChE having both mutations together exhibited a 17.8~27.1-fold reduced catalytic efficiency, suggesting an apparent fitness cost in the monocrotophos-resistant mites. The A391T mutation did not change the kinetic properties of either the substrate or inhibitor when present alone but mitigated the negative impacts of the F439 mutation. To simulate the catalytic activity of the overexpressed TuAChE in two T. urticae strains (approximately 6 copies for AD strain vs. 2 copies for PyriF strain), appropriate TuAChE variants were combined to make up the desired AChE copies and mutation frequencies, and their enzyme kinetics were determined. The reconstituted 6-copy and 2-copy TuAChEs exhibited catalytic efficiency levels comparable to those of a single-copy wildtype TuAChE, suggesting that, if mutations are present, multiple copies of AChE are required to restore a normal level of catalytic activity in the monocrotophos-resistant mites. In summary, the present study provides clear evidence that Tuace duplication resulted in the proportional overexpression of AChE, which was necessary to compensate for the reduced catalytic activity of AChE caused by mutations.  相似文献   

8.
The relationship between the 50% survival time for flies feeding on a malathion-containing medium and the activity of acetylcholinesterase (AChE) was determined for 15 isofemale lines of Drosophila melanogaster. A significant correlation was found (r=0.28, P<0.05), with more resistant lines tending to have a lower level of AChE activity. An association between AChE and malathion resistance was also observed in a selection experiment. The AChE activity decreased in two of two populations selected for malathion resistance. AChE from these populations was altered in kinetic parameters (measured in crude head extracts) and electrophoretic mobility. Although the resistant AChE had a lower activity (V m) on either a per milligram protein or a per individual basis, its apparent K m for acetylthiocholine was lower than that of susceptible AChE. Recombination mapping of both low activity and fast electrophoretic mobility localized these traits to the region of the structural locus (Ace) on the third chromosome. The AChE activity of flies heterozygous for a variety of Ace lesions (kindly provided by Dr. W. M. Gelbart) was consistent with this location. The changes in AChE were suggested to have been caused by selection of alleles at the Ace locus.This work was supported by NSERC Grants A5857, G0183, and A0629.  相似文献   

9.
The chromosomal region surrounding the structural gene for α-glycerophosphate dehydrogenase (αGpdh, 2-20.5) of Drosophila melanogaster has been studied in detail. Forty-three EMS-induced recessive lethal mutations and five previously identified visible mutations have been localized within the 25A-27D region of chromosome 2 by deficiency mapping and in some cases by a recombination analysis. The 43 lethal mutations specify 17 lethal loci. αGpdh has been localized to a single polytene chromosome band, 25F5, and there apparently are no lethals that map to the αGpdh locus.  相似文献   

10.
Homyk T  Sheppard DE 《Genetics》1977,87(1):95-104
A flight test box was developed and used in the isolation and initial characterization of Drosophila melanogaster mutants defective in flight behavior. Forty-eight mutants were isolated from F1 progeny of ethyl methanesulfonate-treated males. Genetic mapping and complementation tests show that the mutations reside at thirty-four different sites on the X chromosome. Different mutants show different degrees of flight ability compared to controls. Forty-six mutations are recessive, while two appear to be semi-dominant with respect to flight behavior. In addition to flight defects, five mutants have visible defects, five behave as temperature-sensitive lethals and three exhibit abnormal electro-retinograms. Alleles of each of the previously known behavioral mutations, Hyperkinetic, ether à go-go and Shaker were found. Preliminary studies also suggest that the flight behavioral phenotype of mutations at seven sites is affected by the temperature at which the flies develop.  相似文献   

11.
Temperature-sensitive (ts) mutants of the Ace gene, which codes for acetylcholinesterase (AChE) in Drosophila melanogaster, were analyzed for defects in viability, behavior and function of the enzyme. The use of heat-sensitive and cold-sensitive mutations permited the function of AChE in the nervous system to be analyzed temporally. All ts mutations were lethal, or nearly so, when animals expressing them were subjected to restrictive temperatures during late embryonic and very early larval stages. Heat treatments to Ace-ts mid- and late larvae had little effect on the behavior of these animals or on the viability or behavior of the eventual adults. Heat-sensitive mutants exposed to nonpermissive temperatures as pupae, by contrast, had severe defects in phototaxis and locomotor activity as adults. AChE extracted from adult ts mutants that had developed at a permissive temperature were abnormally heat labile, and they had reduced substrate affinity when assayed at restrictive temperatures. However, enzyme activity did not decline during exposure of heat-sensitive adults to high temperatures even though such treatments caused decrements in phototaxis (29°) and, eventually, cessation of movement (31°). The cold-sensitive mutant also produced readily detectable levels of AChE when exposed to a restrictive temperature during the early developmental stage when this mutation causes almost complete lethality. We suggest that the relationship among the genetic, biochemical and neurobiological defects in these mutants may involve more than merely temperature-sensitive catalytic functions.  相似文献   

12.
Conditional dominant lethals (CDL) represent a special class of genetic mutations observed in Drosophila. Mutation manifests as a dominant lethal in one genotype, but lethality is not expressed in another genotype. CDL mutants exhibit a set of traits discriminating them from classic mutations. We observed unusually high mobility of flies and high sexual activity of males carrying these mutations. We used special tests for evaluation of energy metabolism of CDL mutants. Indirect calorimetry (CO2 excretion measurement) has been used for estimation of energy exchange in four mutant and two control fly lines. A special device has been used for evaluation of locomotor activity of these fly lines. Energy exchange and locomotor activity in CDL mutants were significantly higher than in control lines. We conclude that some genetic mutations are capable of increasing energy dissipation in their carriers.  相似文献   

13.
Bacteriophage lambda integration and exicision occur by reciprocal recombination within a 15-base homologous core region present in the recombining attachment (att) sites. Strand exchange within the core occurs at precise nucleotide positions, which define an overlap region in which the products of recombination contain DNA strands derived from different parents. In order to define the role of sequence homology during recombination we have constructed point mutations within the core and assayed their effects in vivo and in vitro on site-specific recombination. Two of the mutations are located at position ?3 of the core, which is one base-pair outside of the overlap region where strand exchange occurs. These mutations do not affect integrative or excisive recombination, thereby suggesting that homology outside the overlap region is not required for recombination. Two other mutations are located at position ?2 of the core, which is one base-pair within the overlap region. These mutations show severely depressed integrative and excisive recombination activities in vitro and in vivo when recombined against wild-type att sites. However, the ?2 mutations show normal recombination activity when recombined against att sites containing the homologous mutation, thereby suggesting that homology-dependent DNA interactions are required within the overlap region for effective recombination. In vitro recombination between homoduplex attP sites and heteroduplex attB sites demonstrated that the DNA interactions require only one strand of the attB overlap region to be homologous to attP in order to promote recombination.  相似文献   

14.
R Voss  R Falk 《Mutation research》1973,20(2):221-234
A selection system for the screening of reversions has been constructed and used to test reversions of lethals located in the proximal region of the X chromosome of Drosophila and of Kpn mutations.Spontaneous and induced reversions have been screened, X-rays and ethyl methanesulphonate (EMS) being the mutagens used in the induction experiments.No genuine back-mutation was found in 6·105 gametes scored. Sterile reversions of all four lethals tested were obtained. Their frequency suggested that at least in three of the lethals the sterile reversions represented “escapers” of the lethal effect rather than true revertants.Three fertile reversions of lx4 were found and analyzed. All three were autosomal suppressors, located on the second chromosome, allelic to each other, dominant in males and recessive in females.One fertile reversion of l3DES was found to be an X-linked suppressor. It is suggested that this suppressor is a Y-suppressed lethal, showing a V-type position effect, resulting from an aberration included in the proximal heterochromatin of the X chromosome.Reversions of Kpn were obtained at a similar rate to that found in previous reports22.The absence of true back-mutants in our experiments, in contrast to findings in previous reports, is discussed. From the existing literature on spontaneous and induced back-mutations in Drosophila melanogaster it appears that for several mutations the rates of forward and back-mutation are of the same order of magnitude. It is suggested that reported cases of back-mutations represent mainly inter- and intrachromosomal recombination in duplicated regions rather than mutational events and that the frequency of true back-mutation in Drosophila is usually of an order of magnitude, similar to that known for microorganisms and fungi.  相似文献   

15.
The previously reported difference between the mutational spectra of hydrazine (HZ) and hydroxylamine (HA) was confirmed for one selected locus (miniature) at which hydrazine produces no mutations in treated late larval spermatogonia or premeiotic spermatocytes sampled by 3 days' progeny. The genetically effective dose was measured in most experiments by the production of v mutants, and in a few by the production of sex-linked lethals. In a total of over 37 000 X-chromosomes (16 000 from previous, and over 21 000 from present experiments) treatment with HZ yielded no m mutation, but 90 v mutations. After treatment with genetically equivalent doses of HA, m and v mutations were about equally frequent. The ratio of visible mutations at the v locus to lethals on the X-chromosomes was exceptionally high after either treatment. So was the ratio of m mutations to lethals after treatment with HA.  相似文献   

16.
We used four replicate outbred populations of Drosophila melanogaster to investigate whether the light regimes experienced during the pre-adult (larval and pupal) and early adult stages influence the free-running period (τDD) of the circadian locomotor activity rhythm of adult flies. In a series of two experiments four different populations of flies were raised from egg to eclosion in constant light (LL), in light/dark (LD) 12:12 h cycle, and in constant darkness (DD). In the first experiment the adult male and female flies were directly transferred into DD and their locomotor activity was monitored, while in the second experiment the locomotor activity of the emerging adult flies was first assayed in LD 12:12 h for 15 days and then in DD for another 15 days. The τDD of the locomotor activity rhythm of flies that were raised in all the three light regimes, LL, LD 12:12 h and in DD was significantly different from each other. The τDD of the locomotor activity rhythm of the flies, which were raised in DD during their pre-adult stages, was significantly shorter than that of flies that were raised as pre-adults in LL regime, which in turn was significantly shorter than that of flies raised in LD 12:12 h regime. This pattern was consistent across both the experiments. The results of our experiments serve to emphasise the fact that in order to draw meaningful inferences about circadian rhythm parameters in insects, adequate attention should be paid to control and specify the environment in which pre-adult rearing takes place. The pattern of pre-adult and early adult light regime effects that we see differs from that previously observed in studies of mutant strains of D. melanogaster, and therefore, also points to the potential importance of inter-strain differences in the response of circadian organisation to external influences.  相似文献   

17.
The schistosomicidal agent hycanthone was tested for mutagenicity in Drosophila melanogaster. The compound was administered either by injection into adult males or by larval feeding. The following types of genetic damage were measured:(1) complete and mosaic sex-linked recessive lethal mutations; (2) II–III translocations; and (3) dominant lethals.In postmeiotic germ cells, especially in late spermatids, a pronounced increase was found in the frequency of sex-linked recessive lethals, both completes and mosaics. By contrast, translocations and dominant lethals were not induced.  相似文献   

18.
Yegorova and colleagues (1978) showed that a mutant strain of Drosophila melanogaster (ebony) was more sensitive to UV-induced killing of embryos and also less proficient in photoreactivating (PR) ability than a wild-type (Canton-S) strain and that the genes governing UV sensitivity and PR ability were different and presumably located on the autosomes. The experiments reported in the present paper were designed to compare the patterns of sensitivity of these 2 strains and their hybrids to X-irradiation. The sensitivity of the larvae to the killing effects of X-irradiation, and of male and female germ-cell stages to the X-ray induction of genetic damage was studied.It was found that the larvae of the ebony strain are more sensitive to X-ray-induced killing than those of the Canton-S strain. The frequencies of radiation-induced dominant lethals and sex-linked recessive lethals are higher in spermatozoa sampled from ebony males than in those of Canton-S males. In spermatozoa sampled from hybrid males, the yields of dominant lethals are no higher than in those sampled from Canton-S males and do not seem to depend on the origin of the X-chromosome. There are no statistically significant differences between the ebony and Canton-S strains in the sensitivity of their spermatozoa to the induction of autosomal translocations.Stage-7 oocytes sampled from ebony females are more sensitive to the X-ray induction of dominant lethality than are those from Canton-S females; oocytes sampled from hybrid females manifest a level of sensitivity that is significantly lower than that in either parental strain. The frequencies of X-chromosome losses induced in in this germ-cell stage are significantly lower in ebony than in Canton-S females at least at the exposure level of 3000 R at which 3 experiments were carried out. There are no measurable differences in the amount of dominant lethality induced in stage-14 oocytes of ebony, Canton-S and hybrid females.When X-irradiated Berlin-K males are mated to ebony or Canton-S females, the yields of dominant lethals are higher when ebony females are used, showing that there is a “maternal effect” for this kind of damage. Such a maternal effect is also found for sex-linked recessive lethals (irradiated Muller-5 males mated to ebony or Canton-S females). However, when irradiated ring-X-chromosome-carrying males are mated to ebony or Canton-S females, the frequencies of paternal sex-chromosome losses (scored as XO males) are lower when ebony females are used.These results have been interpreted on the assumption that the ebony strain is homozygous for recessive, autosomal genes that confer increased radiosensitivity and that the Canton-S strain carries the normal, wild-type alleles for these genes. The higher yields of dominant and recessive lethals in mature spermatozoa and of dominant lethals in stage-7 oocytes are a consequence of an enhanced sensitivity to the mutagenic (in particular, to the chromosome-breaking) effects of X-irradiation and/or of defective repair of radiation-induced genetic damage. The lower yield of XO males from irradiated stage-7 oocytes of ebony females is probably a consequence of a defect in the repair of chromosome-breakage effects, resulting in the conversion of potential X losses in females into dominant lethals. The “maternal effects” for dominant lethals, sex-linked recessive lethals and for the loss of ring-X chromosomes are assumed to have a common causal basis, namely, a defective repair of chromosome-breakage events in the females of the ebony strain.  相似文献   

19.
The genetic properties of the hepatocarcinogen N,N-dimethylnitrosamine (DMN) were examined in Drosophila for the assessment of the role of dose, cellular metabolism and genic target in its mutagenicity. Genetic activity was assayed with respect to the induction of the non-specific X-chromosome recessives (lethals and visibles) relative to the effects on specific genic sites, especially rDNA, which yields bobbed (bb) mutations.Dose dependence followed a quadratic course for all mutational classes and germ cell types, which indicated that DMN induced at least some multiple-hit mutagenic events. The genetic activity of DMN was favoured by cellular metabolism for all mutational classes, as was indicated by the progressive increase in mutation yield during spermatogenesis — from the metabolically inert mature sperm to the actively metabolizing spermatocytes and spermatogonia.The role of DNA methylation in the mutagenicity of DMN was deduced from quantitative assays of its genetic activity relative to the methylating nitrosamide — N-methyl-N-nitrosourethane (MNUr) — over the same dose range (1–10 mM) and on identical cell types and genic targets. In the metabolically inert cells (mature sperm), the two compounds were equally active with respect to the non-specific effects (X-recessives), but MNUr was considerably more effective on rDNA (bb's). Conversely, in the metabolically active cells (spermatocytes and spermatogonia), DMN exerted a much higher non-specific mutagenicity than MNUr, but the two compounds were equally effective on rDNA. These results could not be entirely interpreted by the methylation hypothesis and indicated that a DMN aldehydic metabolite, structurally analogous to MNUr, might be responsible for the induction of the rDNA mutations.The rDNA selectivity index of DMN was significantly lower than for MNUr, which paralleled their relative carcinogenic versatilities. However, DMN was comparatively more effective on the tRNA genes, a feature which might be associated with its oncogenic specificity.  相似文献   

20.
Two dominant suppressors of crossing over have been identified following X-ray treatment of the small nematode C. elegans. They suppress crossing over in linkage group II (LGII) about 100-fold and 50-fold and are both tightly linked to LGII markers. One, called C1, segregates independently of all other linkage groups and is homozygous fertile. The other is a translocation involving LGII and X. The translocation also suppresses crossing over along the right half of X and is homozygous lethal. C1 has been used as a balancer of LGII recessive lethal and sterile mutations induced by EMS. The frequencies of occurrence of lethals and steriles were approximately equal. Fourteen mutations were assigned to complementation groups and mapped. They tended to map in the same region where LGII visibles are clustered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号