首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) as a key intermediate for L-ephedrine has been evaluated using immobilized pyruvate decarboxylase (PDC) from Candida utilis. PDC immobilized in spherical polyacrylamide beads was found to have a longer half-life compared with free enzyme. In a batch process, the immobilized PDC generally produced lower L-PAC than free enzyme at the same concentrations of substrates due to increased by-products acetaldehyde and acetoin and reduced benzaldehyde uptake. With immobilized PDC, L-PAC formation occurred at higher benzaldehyde concentrations (up to 300 mM) with the highest L-PAC concentration being 181 mM (27.1 g/L). For a continuous process, when 50 mM benzaldehyde and 100 mM sodium pyruvate were fed into a packed-bed reactor at 4 degrees C and pH 6.5, a productivity of 3.7 mM/h (0.56 g/L . h) L-PAC was obtained at an average concentration of 30 mM (4.5 g/L). The half-life of immobilized PDC reactor was 32 days. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
To provide further understanding of the biotransformation of benzaldehyde to L-phenylacetyl carbinol (L-PAC), an intermediate in L-ephedrine production, a kinetic model has been developed for the deactivation of pyruvate decarboxylase (PDC) by benzaldehyde. The model confirms that deactivation is first order with respect to benzaldehyde concentration and exhibits a square root dependency on time. The model covers the range of benzaldehyde concentrations 100–300 mM, as it has been shown previously that 200 mM benzaldehyde can produce L-PAC concentrations up to 190 mM (28.6 g/L) using partially purified PDC from Candida utilis.  相似文献   

3.
Enzymatic (R)-phenylacetylcarbinol production in benzaldehyde emulsions   总被引:4,自引:0,他引:4  
(R)-Phenylacetylcarbinol [(R)-PAC)] is the chiral precursor for the production of the pharmaceuticals ephedrine and pseudoephedrine. Reaction conditions were improved to achieve increased (R)-PAC levels in a simple batch biotransformation of benzaldehyde emulsions and pyruvate, using partially purified pyruvate decarboxylase (PDC) from the filamentous fungus Rhizopus javanicus NRRL 13161 as the catalyst. Lowering the temperature from 23 degrees C to 6 degrees C decreased initial rates but increased final (R)-PAC concentrations. Addition of ethanol, which increases benzaldehyde solubility, was not beneficial for (R)-PAC production. It was established that proton uptake during biotransformation increases the pH above 7 thereby limiting (R)-PAC production. For small-scale studies, biotransformations were buffered with 2-2.5 M MOPS (initial pH 6.5). High concentrations of MOPS as well as some alcohols and KCl stabilised PDC. A balance between PDC and substrate concentrations was determined with regards to ( R)-PAC production and yields on enzyme and substrates. R. javanicus PDC (7.4 U/ml) produced 50.6 g/l (337 mM) ( R)-PAC in 29 h at 6 degrees C with initial 400 mM benzaldehyde and 600 mM pyruvate. Molar yields on consumed benzaldehyde and pyruvate were 97% and 59%, respectively, with 17% pyruvate degraded and 24% converted into acetaldehyde and acetoin; 43% PDC activity remained, indicating reasonable enzyme stability at high substrate and product concentrations.  相似文献   

4.
Initial rate and biotransformation studies were applied to refine and validate a mathematical model for enzymatic (R)-phenylacetylcarbinol (PAC) production from pyruvate and benzaldehyde using Candida utilis pyruvate decarboxylase (PDC). The rate of PAC formation was directly proportional to the enzyme activity level up to 5.0 U ml-1 carboligase. Michaelis-Menten kinetics were determined for the effect of pyruvate concentration on the reaction rate. The effect of benzaldehyde followed the sigmoidal shape of the Monod-Wyman-Changeux (MWC) model. The biotransformation model, which also included a term for PDC inactivation by benzaldehyde, was used to determine the overall rate constants for the formation of PAC, acetaldehyde, and acetoin. These values were determined from data for three batch biotransformations performed over a range of initial concentrations (viz. 50-150 mM benzaldehyde, 60-180 mM pyruvate, 1.1-3.4 U ml-1 enzyme activity). The finalized model was then used to predict a batch biotransformation profile at 120/100 mM initial pyruvate/benzaldehyde (initial enzyme activity 3.0 U ml-1). The simulated kinetics gave acceptable fitting (R2 = 0.9963) to the time courses of these latter experimental data for substrates pyruvate and benzaldehyde, product PAC, by-products acetaldehyde and acetoin, as well as enzyme activity level.  相似文献   

5.
Biotransformation of benzaldehyde and pyruvate into (R)-phenylacetylcarbinol (PAC) catalysed by Candida utilis pyruvate decarboxylase (PDC) at low buffer concentration (20 mM MOPS) was enhanced by maintenance of neutral pH through acetic acid addition. PDC was very stable in this buffer (half-life 138 h at 6 degrees C), however a benzaldehyde emulsion (400 mM) caused rapid deactivation. The inclusion of 2M glycerol did not protect PDC from inactivation by benzaldehyde but initial rates were increased by 50% and the final PAC level was enhanced from 40 to 51 g l(-1). Low levels of by-products acetaldehyde (0.1-0.15 g l(-1)) and acetoin (1.1-1.3 g l(-1)) were formed in both the presence and absence of 2 M glycerol. Interestingly PDC was more stable towards benzaldehyde when pyruvate was present: no activity was lost during the first hour of biotransformation (2 M glycerol, benzaldehyde concentration decreased from 400 to 345 mM, pyruvate from 480 to 420 mM) but PDC was completely inactivated in less than 30 min when exposed to the same concentrations of benzaldehyde in the absence of pyruvate. Thus the enzyme in catalytic action was more stable than the resting enzyme.  相似文献   

6.
Whole cell pyruvate decarboxylase (PDC) from Candida utilis enhanced the enzymatic production of (R)-phenylacetylcarbinol (PAC) in an aqueous/octanol biotransformation compared to the partially purified PDC especially for a lower range of initial activities (0.3-2.5 U/mL). With an initial activity of 1.1 U/mL and at a 1:1 phase volume ratio, whole cell PDC achieved a maximum specific PAC production of 42 mg/U (2.8 g/L/h) in comparison to 13 mg/U (0.9 g/L/h) for partially purified PDC. The enhanced performance of whole cell PDC was associated with high stability towards the substrate benzaldehyde. The strong PDC inactivation by benzaldehyde was minimal even when whole cells were broken as long as cell debris was not removed from the broken cells. Biotransformations with various cellular components added to partially purified PDC revealed that membrane components especially 2 mg/mL phosphatidylcholine enhanced PAC concentrations. The role of surfactants was further confirmed from the results with synthetic surfactant sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT). It was apparent that the membrane components in whole cells were sufficient for optimal PAC production and no further surfactant addition is required for optimal performance.  相似文献   

7.
The optimization of a continuous enzymatic reaction yielding (R)-(−)-phenylacetylcarbinol ((R)-PAC), a key intermediate of the (1R,2S)-(−)-ephedrine synthesis, is presented. We compare the suitability of different mutants of the pyruvate decarboxylase (PDC) from Zymomonas mobilis with respect to their application in biotransformation using pyruvate or acetaldehyde and benzaldehyde as substrates, respectively. Starting from 90 mM pyruvate and 30 mM benzaldehyde, (R)-PAC was obtained with a space time yield of 27.4 g/(L·day) using purified PDCW392I in an enzyme-membrane reactor. Due to the high stability of the mutant enzymes PDCW392I and PDCW392M towards acetaldehyde, a continuous procedure using acetaldehyde instead of pyruvate was developed. The kinetic results of the enzymatic synthesis starting from acetaldehyde and benzaldehyde demonstrate that the carboligation to (R)-PAC is most efficiently performed using a continuous reaction system and feeding both aldehydes in equimolar concentration. Starting from an inlet concentration of 50 mM of both aldehydes, (R)-PAC was obtained with a space-time yield of 81 g/(L·day) using the mutant enzyme PDCW392M. The new reaction strategy allows the enzymatic synthesis of (R)-PAC from cheap substrates free of unwanted by-products with potent mutants of PDC from Z. mobilis in an aqueous reaction system.  相似文献   

8.
Aqueous/organic two-phase systems have been evaluated for enhanced production of (R)-phenylacetylcarbinol (PAC) from pyruvate and benzaldehyde using partially purified pyruvate decarboxylase (PDC) from Candida utilis. In a solvent screen, octanol was identified as the most suitable solvent for PAC production in the two-phase system in comparison to butanol, pentanol, nonanol, hexane, heptane, octane, nonane, dodecane, methylcyclohexane, methyl tert butyl ether, and toluene. The high partitioning coefficient of the toxic substrate benzaldehyde in octanol allowed delivery of large amounts of benzaldehyde into the aqueous phase at a concentration less than 50 mM. PDC catalyzed the biotransformation of benzaldehyde and pyruvate to PAC in the aqueous phase, and continuous extraction of PAC and byproducts acetoin and acetaldehyde into the octanol phase further minimized enzyme inactivation, and inhibition due to acetaldehyde. For the rapidly stirred two-phase system with a 1:1 phase ratio and 8.5 U/mL carboligase activity, 937 mM (141 g/L) PAC was produced in the octanol phase in 49 h with an additional 127 mM (19 g/L) in the aqueous phase. Similar concentrations of PAC could be produced in the slowly stirred phase separated system at this enzyme level, although at a much slower rate. However at lower enzyme concentration very high specific PAC production (128 mg PAC/U carboligase at 0.9 U/mL) was achieved in the phase separated system, while still reaching final PAC levels of 102 g/L in octanol and 13 g/L in the aqueous phase. By comparison with previously published data by our group for a benzaldehyde emulsion system without octanol (50 g/L PAC, 6 mg PAC/U carboligase), significantly higher PAC concentrations and specific PAC production can be achieved in an octanol/aqueous two-phase system.  相似文献   

9.
Based on experimental data, a kinetic model for the deactivation of partially purified pyruvate decarboxylase (PDC) by benzaldehyde (0-200 mM) in MOPS buffer (2.5 M) has been developed. An initial lag period prior to deactivation was found to occur. With first order dependencies of PDC deactivation on exposure time and on benzaldehyde concentration, a reaction time deactivation constant of 2.64×10-3 h-1 and a benzaldehyde deactivation coefficient of 1.98×10-4 mM-1 h-1 were determined for benzaldehyde concentrations up to 200 mM. The PDC deactivation kinetic equations established in this study are an essential component in an overall model being developed to describe the enzymatic biotransformation of benzaldehyde and pyruvate to produce the pharmaceutical intermediate (R)-phenylacetylcarbinol (R-PAC).  相似文献   

10.
Recent progress in enzymatic (R)-phenylacetylcarbinol (PAC) production has established the need for low cost and efficient biocatalyst preparation. Pyruvate decarboxylase (PDC) added in the form of Candida utilis cells showed higher stability towards benzaldehyde and temperature in comparison with partially purified preparations. In the presence of 50 mM benzaldehyde and at 4°C, a half-life of 228 h was estimated for PDC added as C. utilis cells, in comparison with 24 h for the partially purified preparation. Increasing the temperature from 4 to 21°C for PAC production with C. utilis cells resulted in similar final PAC levels of 39 and 43 g l−1 (258 and 289 mM), respectively, from initial 300 mM benzaldehyde and 364 mM pyruvate. The overall volumetric productivity was enhanced 2.8-fold, which reflected the 60% shorter reaction time at the higher temperature. Enantiomeric excess values of 98 and 94% for R-PAC were obtained at 4 and 21°C, respectively, and benzyl alcohol (a potential by-product from benzaldehyde) was not formed.  相似文献   

11.
Based on experimental data, a kinetic model for the deactivation of partially purified pyruvate decarboxylase (PDC) by benzaldehyde (0–200 mM) in MOPS buffer (2.5 M) has been developed. An initial lag period prior to deactivation was found to occur. With first order dependencies of PDC deactivation on exposure time and on benzaldehyde concentration, a reaction time deactivation constant of 2.64×10?3 h?1 and a benzaldehyde deactivation coefficient of 1.98×10?4 mM?1 h?1 were determined for benzaldehyde concentrations up to 200 mM. The PDC deactivation kinetic equations established in this study are an essential component in an overall model being developed to describe the enzymatic biotransformation of benzaldehyde and pyruvate to produce the pharmaceutical intermediate (R)-phenylacetylcarbinol (R-PAC).  相似文献   

12.
Herein, we synthesized (R)-phenylacetylcarbinol (PAC), a pharmaceutical intermediate for ephedrine and pseudoephedrine, from benzaldehyde and pyruvate using a recombinant pyruvate decarboxylase (PDC) from Zymomonas mobilis. A whole cell reaction consisting of 30 mM benzaldehyde, 60 mM pyruvate, and a mutant PDC enzyme (PDC W329M; 1.6 mg DCW/mL) produced 12.4 mM (R)-PAC and less than 0.3 mM benzyl alchohol in 15 h at 20°C, outperforming the crude enzyme extract reaction (1.2 mM (R)-PAC) and minimizing formation of benzyl alchohol, the major by-product of S. cerevisiae whole cell reaction. These observations suggested that recombinant E. coli whole cell reactions are more efficient than crude enzyme extract or yeast-based reactions. We also demonstrated that the E. coli whole cell reaction performed effectively without expensive thiamin diphosphate cofactor. Finally, whole cell reaction (8 mg DCW/mL) was carried out with 200 mM benzaldehyde, 400 mM pyruvate in 10 mL of 500 mM phosphate buffer (pH 6.5), and 72 mM (R)-PAC was produced with 36% conversion for 15 h. © KSBB  相似文献   

13.
L-Phenylacetylcarbinol (L-PAC): biosynthesis and industrial applications   总被引:1,自引:0,他引:1  
L-Phenylacetylcarbinol (L-PAC), an important drug intermediate, can be produced by biotransformation of benzaldehyde, mainly by yeast cultures but also by Zymomonas mobilis. The biotransformation by free cells, immobilized cells, mutant organisms, purified pyruvate decarboxylase as well as the use of bioreactors, the downstream processing of L-PAC and the industrial applications have been reviewed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Based on previous studies, Candida utilis pyruvate decarboxylase (PDC) proved to be a stable and high productivity enzyme for the production (R)-phenylacetylcarbinol (PAC), a pharmaceutical precursor. However, a portion of the substrate pyruvate was lost to by-product formation. To identify a source of PDC which might overcome this problem, strains of four yeasts -- C. utilis, Candida tropicalis, Saccharomyces cerevisiae and Kluyveromyces marxianus -- were investigated for their PDC biocatalytic properties. Biotransformations were conducted with benzaldehyde and pyruvate as substrates and three experimental systems were employed (in the order of increasing benzaldehyde concentrations): (I) aqueous (soluble benzaldehyde), (II) aqueous/benzaldehyde emulsion, and (III) aqueous/octanol-benzaldehyde emulsion. Although C. utilis PDC resulted in the highest concentrations of PAC and was the most stable enzyme, C. tropicalis PDC was associated with the lowest acetoin formation. For example, in system (III) the ratio of PAC over acetoin was 35 g g(-1) for C. tropicalis PDC and 9.2 g g(-1) for C. utilis PDC. The study thereby opens up the potential to design a PDC with both high productivity and high yield characteristics.  相似文献   

15.
The activity of pyruvate dehydrogenase complex (PDC) purified from pig kidney cortex is sensitive to changes in ionic strength (mu). At low ionic strength (mu = 0.04 M) the specific activity of PDC was 12.22 mumol/min/mg, whereas at high ionic strength (mu = 0.15 M) the measured activity of the complex decreased to 4.88 mumol/min/mg. The optimum activity of PDC was achieved within a small range of ionic strength, mu = 0.035-0.040 M. Increasing the ionic strength from mu = 0.05 to mu = 0.15 M decreased the s0.5 for pyruvate from 125 to 72 microM and increased the Hill coefficient from 1.0 to 1.3. The effect of pH on PDC activity also was dependent upon ionic strength. At pH 7.2 the activity of PDC at mu = 0.05 and mu = 0.15 M was 90 and 55% of the maximal activity, respectively. Furthermore, the effects of Na+, K+, HCO3-, Cl-, and HPO4(2-) on PDC activity were dependent on ionic strength and pH. The addition of K+ (80 mM) at mu = 0.10 and mu = 0.15 M increased the activity of PDC by 12 and 42%, respectively. Lowering the pH from 8.2 to 7.5 resulted in a decrease in the s0.5 for pyruvate from 179 to 110 microM and from 110 to 35 microM in the presence and absence of K+ (80 mM), Na+ (20 mM), Cl- (20 mM), HCO3- (20 mM), and HPO4(2-) (10 mM), respectively. The observed changes in the properties of PDC in response to changes in ionic strength likely was a result of changes in the intramolecular electrostatic interactions within the complex. In this regard it was determined using two-dimensional agarose gel electrophoresis of the intact multienzyme complex that increasing the ionic strength to which PDC is exposed decreased the measured radius of PDC and may have decreased the electronegative surface charge of the complex.  相似文献   

16.
Loss of substrate, pyruvate, a limitation for enzymatic batch production of (R)-phenylacetylcarbinol (PAC), resulted from two phenomena: temperature dependent non-enzymatic concentration decrease due to the cofactor Mg2+ and formation of by-products, acetaldehyde and acetoin, by pyruvate decarboxylase (PDC). In the absence of enzyme, pyruvate stabilization was achieved by lowering the Mg2+ concentration from 20 to 0.5 mM. With 0.5 mM Mg2+ Rhizopus javanicus and Candida utilis PDC produced similar levels of PAC (49 and 51 g l–1, respectively) in 21 h at 6 °C; however C. utilis PDC formed less by-product from pyruvate and was more stable during biotransformation. The process enhancements regarding Mg2+ concentration and source of PDC resulted in an increase of molar yield (PAC/consumed pyruvate) from 59% (R. javanicus PDC, 20 mM Mg2+) to 74% (R. javanicus PDC, 0.5 mM Mg2+) to 89% (C. utilis PDC, 0.5 mM Mg2+).  相似文献   

17.
The effect of process parameters on the biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) using a yeast isolate identified as Torulaspora delbrueckii was studied. The maximum yield of L-PAC obtained was (331 mg) per 100 ml biotransformation medium (glucose 3%, peptone 0.6% and at pH 4.5) from 600 mg of benzaldehyde with 8 h of reaction at 30 ± 2 °C. Growing the organism in presence of 3% glucose reduced the biotransformation time to 120 min. Addition of 0.6% acetaldehyde (30–35%) lead to an increase in L-PAC yield to 450 mg%. Semi-continuous feeding of benzaldehyde (200 mg) and acetaldehyde (200 l) four times at 30 min intervals could produce 683 mg of L-PAC/100 ml biotransformation medium. Chiral HPLC analysis of purified L-PAC and PAC-diol showed 99% enantiomeric purity. The cell mass was found to be reusable for biotransformation up to nine times when benzaldehyde and acetaldehyde levels were maintained at (350 mg and 350 l)–(400 mg and 400 l). At concentrations from 450 mg and 450 l to 600 mg and 600 l, however the cell mass could give efficient biotransformation only during one use.  相似文献   

18.
Considerable evidence indicates that acetaldehyde is released from the leaves of a variety of plants. The conventional explanation for this is that ethanol formed in the roots is transported to the leaves where it is converted to acetaldehyde by the alcohol dehydrogenase (ADH) found in the leaves. It is possible that acetaldehyde could also be formed in leaves by action of pyruvate decarboxylase (PDC), an enzyme with an uncertain metabolic role, which has been detected, but not characterized, in cottonwood leaves. We have found that leaf PDC is present in leaf veins and petioles, as well as in non-vein tissues. Veins and petioles contained measurable pyruvate concentrations in the range of 2 mM. The leaf vein form of the enzyme was purified approximately 143-fold, and, at the optimum pH of 5.6, the Km value for pyruvate was 42 μM. This Km is lower than the typical millimolar range seen for PDCs from other sources. The purified leaf PDC also decarboxylates 2-ketobutyric acid (Km = 2.2 mM). We conclude that there are several possible sources of acetaldehyde production in cottonwood leaves: the well-characterized root-derived ethanol oxidation by ADH in leaves, and the decarboxylation of pyruvate by PDC in leaf veins, petioles, and other leaf tissues. Significantly, the leaf vein form of PDC with its high affinity for pyruvate, could function to shunt pyruvate carbon to the pyruvate dehydrogenase by-pass and thus protect the metabolically active vascular bundle cells from the effects of oxygen deprivation.  相似文献   

19.
The activity of pyruvate dehydrogenase complex (PDC) purified from pig kidney cortex was found to be affected by various uni- and bi-valent ions. At a constant strength of 0.13 M at pH 7.8, K+, Na+, Cl-, HCO3- and HPO4(2-) had significant effects on the activity of PDC: Na+, K+ and HPO4(2-) stimulated, but HCO3- and Cl- inhibited. The stimulatory effect of Na+ was mediated by a change in the Vmax. of PDC only, whereas K+ produced an increase in Vmax. and a change in the Hill coefficient (h). The extent of stimulation produced by HPO4(2-)4 on the activity of PDC was dependent on the concentrations of K+ and Na+. Both cations at concentrations higher than 40 mM partially prevented the effect of HPO4(2-)4. Cl- and HCO3- anions decreased the Vmax. of the enzyme and increased the S0.5 for pyruvate. The effects of Na+, K+, Cl-, HPO4(2-) and HCO3- on the activity of PDC were additive. In the presence of 80 mM-K+, 20 mM-Na+, 10 mM-HPO4(2-), 20 mM-Cl- and 20 mM-HCO3- the activity of PDC was increased by 30%, the S0.5 for pyruvate was increased from 75 to 158 microM and h was decreased from 1.3 to 1.1. Under these conditions and at 1.0 mM-pyruvate, the activity of PDC was 80% of the maximal activity achieved in the presence of these ions and 4.5 mM-pyruvate. The present study suggests that PDC may operate under non-saturating concentrations for substrate in vivo.  相似文献   

20.
Giuseppe Forlani   《Phytochemistry》1999,50(8):175-1310
An enzyme able to catalyze the synthesis of acetoin (3-hydroxy-2-butanon) from either pyruvate or acetaldehyde was isolated, partially purified and characterized from maize (Zea mays L. cv Black Mexican Sweet) cultured cells. It exhibited a maximal rate at neutral pH values, and strictly required thiamine pyrophosphate and a divalent cation for activity; on the contrary, unlike bacterial pyruvate oxidases, flavin was not required. Apparent Michaelis constants were 260±20 mM for pyruvate and 24±7 mM for acetaldehyde. Both substrate affinity and specificity were notably higher than those of pyruvate decarboxylase, an enzyme that also synthesizes acetoin as by-product. The partially purified protein was unable to catalyze the formation of other possible products of pyruvate decarboxylation, thus carboligase appears to be its main activity. Results suggest that acetoin synthesis may be of physiological significance in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号