首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.  相似文献   

2.
Endogenous ghrelin causes interdigestive contractions of the stomach in rats. In contrast, previous studies showed that 5-HT(3) and 5-HT(4) receptors were involved in regulating intestinal interdigestive contractions. We studied the possible role of endogenous ghrelin and 5-HT regulating interdigestive gastrointestinal (GI) contractions in rats. Four strain gauge transducers were implanted on the antrum, duodenum, and proximal and distal jejunum. After an overnight fast, GI contractions were recorded in freely moving conscious rats and ghrelin receptor antagonists [(d-lys3)GHRP6; 1 micromol/kg], 5-HT(3) antagonists (Ondansetron; 0.5 mg/kg) and 5-HT(4) antagonists (GR 125,487; 1 mg/kg) were administered (bolus iv). To evaluate the relationship between the luminal concentrations of 5-HT and phase III-like contractions of the duodenum, duodenal juice was collected via the intraduodenal catheter. 5-HT content of the duodenal juice was measured by HPLC. (d-lys3)GHRP6 significantly attenuated the occurrence and amplitude of phase III-like contractions of the antrum, but not the duodenum and jejunum. 5-HT(4) antagonists significantly reduced spontaneous phase III-like contractions of the jejunum, without affecting those of the antrum and duodenum. In contrast, 5-HT(3) antagonists did not affect phase III-like contractions in GI tract. Luminal concentration of 5-HT at the phase III-like contraction (36.0 +/- 13.3 ng/ml, n = 9) was significantly higher than that at the phase I-like contractions of the duodenum (4.9 +/- 1.6 ng/ml, n = 9, P < 0.05). It is suggested that released ghrelin from the gastric mucosa mediates gastric phase III-like contractions, whereas 5-HT released from enterochromaffin cells of the duodenal mucosa mediates intestinal phase III-like contractions via 5-HT(4) receptors.  相似文献   

3.
It is known that K(ATP) channel openers inhibit the release and refilling of Ca(2+) from intracellular stores. The present study was designed to test the effects of levcromakalim in human umbilical artery (HUA) rings stimulated by serotonin (5-HT) and KCl in Ca-free medium. Umbilical cords were obtained at vaginal or cesarean deliveries from healthy, term pregnancies. After the isolation, HUA rings were placed in organ baths in solution with indomethacin (10(-5) M) and N(G)-nitro-L-arginine methyl ester (L-NAME) (10(-3) M) at 37 degrees C and aerated with 95% O(2) and 5% CO(2) for the measurement of isometric force. In Ca-free solution with Ethylene glycol-bis (ss-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (2 mM) the contractions produced by 5-HT (10(-6) M) and KCl (40 mM) decreased significantly. Afterwards, HUA rings were treated with 5-HT and KCl in repeated manner in Ca-free medium. In contrast to KCl, 5-HT induced contractions reduced in each application, progressively. Levcromakalim (10(-4) M) abolished the contractions elicited by 5-HT. On the other hand, levcromakalim had a little but significant inhibitory effect on KCl induced contraction in Ca-free medium. These results suggest that Ca(2+) is not the only transduction pathway in KCl produced contractions of HUA smooth muscle cells.  相似文献   

4.
Recent studies suggest that a bronchial-derived relaxing factor (BrDRF) decreases the contractility of newborn, but not fetal, rat pulmonary arteries (PAs) by a nitric oxide (NO)-mediated mechanism. We studied the effect of an adjacent bronchus on PA contractility to norepinephrine (NE) in late-gestation fetal (n = 7), neonatal (1 day old, n = 9), ventilated neonatal (24-h ventilation from birth with 100% oxygen, n = 9), and adult sheep (n = 6) in the presence and absence of the NO synthase inhibitor N(omega)-nitro-l-arginine (l-NNA). The sheep were anesthetized and killed, and fifth-generation PA rings with and without an attached adjacent bronchus (PA+Br) were contracted in standard tissue baths with NE (10(-8)-10(-6) M). NE contractions were expressed as fraction of KCl (118 mM) contraction and as grams of contraction force. NE contractions were significantly diminished by the presence of an attached bronchus in the neonatal and ventilated neonatal and adult, but not fetal, lambs. Hyperoxic ventilation markedly increased NE contractions in PA and PA+Br. l-NNA significantly enhanced NE contractions in PA+Br in postnatal but not in fetal lambs. Pretreatment with l-NNA abolished the difference between NE contractions in PA and PA+Br in neonatal but not in hyperoxic ventilated neonatal lambs. We conclude that there is a BrDRF that is developmentally regulated and has vascular activity postnatally but not during fetal life. The effect of BrDRF is predominantly mediated by NO in air-breathing neonatal lambs but may involve a second non-NO mediator following hyperoxic ventilation. We speculate that BrDRF may have an important role in postnatal changes in pulmonary arterial reactivity.  相似文献   

5.
Nichols R 《Peptides》2007,28(4):767-773
Invertebrate sulfakinins are structurally and functionally homologous to vertebrate cholecystokinin (CCK) and gastrin. To date, sulfakinins are reported to require a sulfated tyrosine for activity; sulfated and nonsulfated CCK and gastrin are active. This is the first nonsulfated sulfakinin activity reported. Nonsulfated Drosophila melanogaster sulfakinins or drosulfakinins (nsDSK I; PheAspAspTyrGlyHisMetArgPheNH2) and (nsDSK II; GlyGlyAspAspGlnPheAspAspTyrGlyHisMetArgPheNH2) decreased the frequency of contractions of adult D. melanogaster foregut (crop) in vivo. The EC50's for nsDSK I and nsDSK II were approximately 2 x 10(-9)M and approximately 3 x 10(-8)M, respectively. Nonsulfated DSK peptides also decreased the frequency of larval anterior midgut contractions. Sulfated DSK peptides decreased both adult and larval gut contractions. Whether sulfation is required for sulfakinin activity may depend on where the peptide is applied, what tissue is analyzed, or what preparation is used. D. melanogaster contains two sulfakinin receptors, DSK-R1 and DSK-R2; vertebrates contain two CCK receptors, CCK-1 and CCK-2. A sulfated DSK I analog, [Leu7] sDSK I, binds to expressed DSK-R1; the corresponding nonsulfated analog does not bind to DSK-R1. No DSK-R2 binding data are reported. Sulfated and nonsulfated CCK peptides preferentially bind to CCK-1 or CCK-2, respectively. Sulfated and nonsulfated sulfakinins may bind to DSK-R1 or DSK-R2, respectively. Sulfakinin activities, spatial and temporal distribution, and homology to CCK and gastrin suggest sulfated and nonsulfated DSK peptides act in diverse roles in the neural and gastrointestinal systems including gut emptying and satiety.  相似文献   

6.
Ion-selective electrodes were employed to measure the concentration of K+, Na+ and Ca2+ in blood plasma of rabbits with burn shock or crush syndrome (CS). No significant changes in the plasma concentration of Na+, and Ca2+ were found under both pathological conditions. The plasma concentration of K+ in burn shock significantly increased from 3.06 +/- 0.73 (control) to 5.28 +/- 2.65 mM (n = 10), whereas in CS from 3.42 +/- 1.03 to 4.92 +/- 1,29 mM (n = 8). The rise of K+ concentration in the control plasma to the maximal values seen in the "burn" and "syndrome" plasma led to an increase in the duration of intracellular action potentials (AP) but did not substantially change the amplitude of isometric contractions of the papillary muscles of rabbit heart. Meanwhile the similar rise of the duration of intracellular AP during perfusion of the papillary muscles with the "burn" and "syndrome" plasma was accompanied by an appreciable drop of the amplitude of isometric contractions. It is suggested that elevation of K+ concentration in blood plasma, inducing an increase in the duration of intracellular AP of cardiocytes may be responsible for changes in the ECG in burn and CS. At the same time inhibition of myocardial contractility in burn shock and CS is virtually not linked with hyperkalemia.  相似文献   

7.
We tested the hypothesis that nitric oxide has a positive inotropic effect on mammalian cardiac muscle contractility and that this effect sums with the positive inotropic effect of beta1-adrenergic agonists when both are present. Feline right ventricular papillary muscles were stimulated to contract isometrically at 0.2 Hz in Krebs-Henseleit bicarbonate buffer (KREBS) gassed with 95% O2 and 5% CO2 (26 degrees C; pH 7.34). The nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine (SNAP, 10(-5) M), and the membrane permeable cGMP analog 8-bromoguanosine-3',5'-cyclophosphate sodium (Br-cGMP, 10(-5) M), significantly increased developed force by 13.3+/-1.5% (n = 11) and 7.8+/-2.8% (n = 7), respectively. SNAP, at 10(-5) M, significantly increased the force developed by papillary muscle treated with 10(-11) M or 10(-9) M dobutamine hydrochloride (a beta1-adrenergic agonist) (n = 25, 11.3+/-2.9% and 10.0+/-3.6%, respectively) when compared with the addition of KREBS (n = 27, 2.6+/-0.9% and 5.5+/-0.9%), but the increase was less than predicted by the sum of inotropic effects of SNAP and dobutamine. SNAP at 10(-5) M did not change developed force in muscles treated with 10(-7) M dobutamine but it significantly decreased developed force in muscles challenged with 10(-5) M dobutamine (n = 18, 29.3+/-5.0%) when compared with KREBS (n = 10, 41.5+/-6.8%). Similarly, 10(-4) M 8-bromo-adenosine cyclic 3',5'-hydrogen phosphate monosodium (a membrane permeable cAMP analog) increased developed force 14.9+/-3.3% and the addition of 10(-5) M Br-cGMP to those muscles significantly reduced developed force by 3.5%+/-1.1% (n = 7). Thus, the positive inotropic effect of NO decreased and ultimately became an attenuation as the level of beta1-adrenergic stimulation increased due at least in part, to an interaction between the cAMP and cGMP second messenger pathways.  相似文献   

8.
CCK mediates the effects of nutrients on gastrointestinal motility and appetite. Intravenously administered CCK stimulates pyloric pressures, increases plasma PYY, and suppresses ghrelin, all of which may be important in the regulation of appetite and energy intake. The dose-related effects of exogenous CCK on gastrointestinal motility and gut hormone release, and the relationships between these effects and those on energy intake, are uncertain. We hypothesized that 1) intravenous CCK-8 would have dose-dependent effects on antropyloroduodenal (APD) pressures, plasma PYY and ghrelin concentrations, appetite, and energy intake and 2) the suppression of energy intake by CCK-8 would be related to the stimulation of pyloric motility. Ten healthy men (age 26 +/- 2 yr) were studied on four separate occasions in double-blind, randomized fashion. APD pressures, plasma PYY and ghrelin, and appetite were measured during 120-min intravenous infusions of 1) saline ("control") or 2) CCK-8 at 0.33 ("CCK0.33"), 3) 0.66 ("CCK0.66"), or 4) 2.0 ("CCK2.0") ng.kg(-1).min(-1). After 90 min, energy intake at a buffet meal was quantified. CCK-8 dose-dependently stimulated phasic and tonic pyloric pressures and plasma PYY concentrations (r > 0.70, P < 0.05) and reduced desire to eat and energy intake (r > -0.60, P < 0.05) without inducing nausea. There were relationships between basal pyloric pressure and isolated pyloric pressure waves (IPPW) with plasma CCK (r > 0.50, P < 0.01) and between energy intake with IPPW (r = -0.70, P < 0.05). Therefore, our study demonstrates that exogenous CCK-8 has dose-related effects on APD motility, plasma PYY, desire to eat, and energy intake and suggests that the suppression of energy intake is related to the stimulation of IPPW.  相似文献   

9.
We investigated whether strong compression of an intestinal segment by giant migrating contractions (GMCs) initiates pseudoaffective signals from the gut, similar to those initiated by its distension with a balloon. The experiments were performed on conscious dogs by using close intra-arterial infusions of test substances that affect the receptors only in the infused segment. The stimulation of GMCs by close intra-arterial infusion of CGRP or distension of an intestinal segment by balloon increased the heart rate; the increase in heart rate was greater when the balloon distension and GMCs occurred concurrently in separate intestinal segments. The suppression of contractility in the distended segment blocked the increase in heart rate. By contrast, the stimulation of rhythmic phasic contractions (RPCs) or their spontaneous occurrence did not increase the heart rate. The occurrence of GMCs as well as intestinal distension also produced descending inhibition. The descending inhibition was blocked by the inhibition of nitric oxide synthase, but it was unaffected by the inhibition of adenylyl cyclase, purinergic receptors P2X and P2Y, and muscarinic receptors M(1) and M(2). The synaptic transmission for descending inhibition was mediated primarily by nicotinic receptors and activation of nitric oxide synthase. It was unaffected by the inhibition of tachykinin receptors NK(1), NK(2), and NK(3); serotonin receptors 5-HT(1A), 5-HT(2)/5-HT(1C), 5-HT(3), and 5-HT(4); and muscarinic receptors. Our findings show that GMCs, but not RPCs, initiate pseudoaffective signals from the gut. In the presence of visceral hypersensitivity or impaired descending inhibition, the GMCs may become a noxious stimulus.  相似文献   

10.
Stomach and small intestine development was characterized in tammar wallaby (Macropus eugenii) pouch young (PY) using both morphological and immunohistological criteria. At birth, the stomach is undeveloped in comparison to the well-developed intestinal mucosa. The stomach maintains a uniform morphology in both the forestomach and hindstomach regions until the specialization of cardiac and gastric glands are seen at PY170. Parietal cells, found throughout the mucosa are downregulated in the forestomach as cardiac glandular stomach is developing prior to the transition of the offspring to a diet that includes herbage. In the small intestine, mature-type villi are present at birth but the muscularis externa is immature and undergoes significant development around PY120 onwards. We investigated the effects of changes in maternal milk on gut development in the tammar wallaby using a cross fostering approach that provided younger pouch young with older stage milk. Younger PY (average age 67 days postpartum, n = 5) were transferred onto teats vacated by older stage PY (average age 100 days postpartum, n = 6) for 34 days before gut development was assessed. In addition milk analysis was performed before and after fostering events. Cross-fostered PY animals receiving older stage milk were found to be 31% heavier than controls. There was no difference between carbohydrate and protein concentrations however, fostered PY milk had a higher concentration of lipid than that of controls that may have contributed to heavier fostered PY. No difference was found in stomach or small intestine development between these groups using the criteria employed in this study.  相似文献   

11.
This preliminary study has analyzed the potential ability of the 5-HT1A ligand spiroxatrine to interact with vascular alpha 1-adrenoceptors. Norepinephrine and the selective alpha 1-adrenoceptor agonist, methoxamine, elicited concentration-dependent contractions of rat aortic rings. In contrast, (+/-)-spiroxatrine (from 10(-8) to 3.1X10(-7) M) was devoid of any effect on vascular tone per se, but shifted the concentration-response curves of norepinephrine and methoxamine to the right in a concentration-dependent manner with pA2 values of 8.48 +/- 0.22 and 8.93 +/- 0.33, respectively. Endothelium removal did not significantly affect the above pA2 values of (+/-)-spiroxatrine. These data, taken in concert, support the contention that (+/-)-spiroxatrine displays alpha 1-adrenoceptor blocking properties in rat aortic rings.  相似文献   

12.
Acetylcholine (ACh) (1.5 X 10(-5) M) elicited three different types of tonic and phasic contraction of muscularis muscle from different parts (cardiac, middle and pyloric) of the stomach of Bufo marinus. Prostaglandin E2 (PGE2) (10(-9)-10(-6) M) induced a concentration-dependent relaxation of tonic contractions elicited by ACh (1.5 x 10(-5) M) of strips from the cardiac part while potentiating the phasic contractions from the middle part of the stomach. PGE2 (10(-7) M) relaxed tonic contraction and potentiated phasic contraction concomitantly in preparations in which tonic and phasic contractions were elicited by ACh (1.5 x 10(-5) M). The effects of PGE2 on the preparation are related to the part of the stomach from where the strips are prepared and the muscle tone of the preparation.  相似文献   

13.
In vitro bladder contractions in response to cumulative carbachol doses were measured in the presence of selective muscarinic antagonists from rats which had their major pelvic ganglion bilaterally removed (denervation, DEN) or from rats in which the spinal cord was injured (SCI) via compression. DEN induced both hypertrophy (505+/-51 mg bladder weight) and a supersensitivity of the bladders to carbachol (EC50=0.7+/-0.1 uM). Some of the SCI rats regained the ability to void spontaneously (SPV). The bladders of these animals weighed 184+/-17 mg, significantly less than the bladders of non voiding rats (NV, 644+/-92 mg). The potency of carbachol was greater in bladder strips from NV SCI animals (EC50=0.54+/-0.1 uM) than either bladder strips from SPV SCI (EC50=0.93+/-0.3 microM), DEN or control (EC50=1.2+/-0.1 microM) animals. Antagonist affinities in control bladders for antagonism of carbachol induced contractions were consistent with M3 mediated contractions. Antagonist affinities in DEN bladders for 4-diphenlacetoxy-N-methylpiperidine methiodide (4-DAMP, 8.5) and para fluoro hexahydrosilodifenidol (p-F-HHSiD, 6.6); were consistent with M2 mediated contractions, although the methoctramine affinity (6.5) was consistent with M3 mediated contractions. p-F-HHSiD inhibited carbachol induced contraction with an affinity consistent with M2 receptors in bladders from NV SCI (pKb=6.4) animals and M3 receptors in bladders from SPV SCI animals (pKb=7.9). Subtype selective immunoprecipitation of muscarinic receptors revealed an increase in total and an increase in M2 receptor density with no change in M3 receptor density in bladders from DEN and NV SCI animals compared to normal or sham operated controls. M3 receptor density was lower in bladders from SPV SCI animals while the M2 receptor density was not different from control. This increase in M2 receptor density is consistent with the change in affinity of the antagonists for inhibition of carbachol induced contractions and may indicate that M2 receptors or a combination of M2 and M3 receptors directly mediate smooth muscle contraction in bladders from DEN and NV SCI rats.  相似文献   

14.
1. Pentagastrin (10(-8)-2 X 10(-6) M) was found to increase motor activity in the cardiac stomach and spiral intestine but only occasionally in the pyloric stomach and not at all in the rectum. 2. Substance P increased motor activity in both parts of the stomach and the rectum (10(-8)-5 X 10(-7) M) but had only a slight effect on the spiral intestine. 3. No effect on the activity of any part of the gut was seen with VIP (10(-7) M), neurotensin (2 X 10(-6) M) or bradykinin (2 X 10(-5) M). 4. The responses to pentagastrin or substance P were not abolished by TTX (10(-6) M). 5. The implications of these results for the understanding of the control of gut motility in elasmobranchs is discussed.  相似文献   

15.
Peuler JD  Lee JM  Smith JM 《Life sciences》1999,65(23):PL 287-PL 293
The ability of metformin (MF) to acutely relax phenylephrine (PE)-induced contraction in the isolated rat tail artery is reported to be accompanied by repolarization of the arterial smooth muscle cell (SMC) membranes. These membranes contain potassium (K) channels which if opened could mediate such repolarization and resultant relaxation. We have shown that the acute relaxation of rat tail arterial tissue rings by graded levels of MF > or = 0.24 mmol/L is markedly antagonized by a high concentration of tetraethylammonium (TEA; 10 mmol/L) which nonselectively inhibits nearly all K channels. Thus, we tested effects of more selective inhibitors of K channels in the same tissue. We also tested MF for relaxation of contractions induced by high levels of extracellular K. To avoid confounding variables, we also conducted these tests in arterial rings in which endothelium and sympathetic nerve endings had been removed. In the absence of K channel inhibition, half-maximal PE-induced contractions were rapidly relaxed by all levels of MF with an EC50 of 1.7+/-0.2 mmol/L (n=8 rings). 1 mmol/L 4-aminopyridine (4AP) which only inhibits voltage-operated and ATP-sensitive K channels markedly antagonized this relaxation, shifting the EC50 for MF to 7.5+/-0.7 mmol/L (n=8; p < 0.05). TEA at 1 mmol/L (which only inhibits calcium-activated K channels), barium at 20 micromol/L (which only inhibits inward rectifier K channels) and glyburide at 5 micromol/L (which only inhibits ATP-sensitive K channels) did not alter this relaxation. Finally, MF failed to relax contractions produced by elevations of extracellular K to levels high enough to abolish the K gradient across arterial SMC membranes. Thus, acute relaxation of rat tail arterial smooth muscle by MF may be dependent on the transmembrane K gradient and mediated at least in part by specific activation of K efflux through 4AP-sensitive voltage-dependent K channels in arterial SMC membranes.  相似文献   

16.
Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.  相似文献   

17.
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg(-1), I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg(-1) urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 +/- 2.42 mg dl(-1) (n = 44) and >500 mg dl(-1) (n = 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 +/- 0.05 ul min(-1) (n = 10) and 1.28 +/- 0.16 ul min(-1) (n = 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 +/- 15.41 nM (n = 15) and 130.62 +/- 17.66 nM (n = 8), respectively. CCK-8 (10(-8)M) induced a peak response of 436.55 +/- 36.54 nM (n = 15) and 409.31 +/- 34.64 nM (n = 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 +/- 0.06 nM (n = 18) and 0.86 +/- 0.04 nM (n = 10). In the presence of CCK-8 (10(-8)) [Mg2+]i in control and diabetic cells was 0.80 +/- 0.05 nM (n = 18) and 0.60 +/- 0.02 nM (n = 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis.  相似文献   

18.
The indolealkylamine 5-hydroxytryptamine (5-HT, 0.1 nM-1 μM) caused dose-dependent increases in the number of contractions observed in guts isolated from the caterpillar Spodoptera frugiperda. Of the 5-HT analogues tested for agonist action, 2-methyl-5-HT (0.1-10 μM) was a full agonist with reduced potency while α-methyl-5-HT (0.1-100 μM), 5-carboxamidotryptamine (0.1-100 μM), 5-methoxytryptamine (5-MeOT) (10 nM-10 μM), and tryptamine (1-100 μM) were partial agonists. Incubation of isolated guts with proven mammalian 5-HT receptor antagonists showed that cyproheptadine (10 nM-1 μM), MDL 72222 (1-10 μM), tropisetron (1-10 μM) and 5-benzoyloxygramine (1-10 μM) were potent non-competitive antagonists of 5-HT-induced tissue contraction. In comparison, ketanserin (0.1-1 μM) was a competitive antagonist. The mammalian selective serotonin reuptake inhibitors, clomipramine (10 nM-10 μM) and fluoxetine (10 nM-10 μM) also caused non-competitive inhibition of 5-HT-induced contraction while fluvoxamine (10 nM-10 μM) was a weak competitive antagonist. Low doses of clomipramine (0.1 μM) caused potentiation of 5-HT-induced gut contraction thereby suggesting the presence of 5-HT reuptake systems in this tissue. The contractile effects of 5-HT were inhibited by verapamil, Li+ and H7 and potentiated by theophylline thereby indicating that L-type Ca2+ channels, phosphatidylinositol second messengers and cAMP, respectively, are involved in 5-HT-induced tissue contraction. The 5-HT receptors mediating contractility in the gut of S. frugiperda have properties in common with mammalian 5-HT2 and Drosophila 5-HTdro2A/2B receptors. In addition, these data suggest that the tissue also contains receptors that are similar to mammalian 5-ht6 and 5-HT7 as well as Drosophiladro1 receptors. However, the primary amino acid sequence of these lepidopteran 5-HT receptors will have to be elucidated before full comparisons can be made.  相似文献   

19.
Norepinephrine-stimulated prostacyclin synthesis was studied in rat aortic rings by measuring 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay. Norepinephrine (10(-6) M) results in a 10- to 20-fold increase in 6-keto-PGF1 alpha synthesis by rat aortic rings (54 +/- 11 to 437 +/- 260 pg X mg wet weight-1 X 20 min-1). The maximal stimulation of 6-keto-PGF1 alpha synthesis was observed with a norepinephrine concentration of 10(-5) M at a mean effective concentration (EC50) of 9.5 +/- 3.2 X 10(-7) M which is similar to the contractile response (Emax = 10(-5) M, EC50 = 6.5 +/- 1.8 X 10(-7) M). Potassium chloride (30 mM), although causing a similar maximal contractile response as 10(-6) M norepinephrine, did not increase 6-keto-PGF1 alpha synthesis. Norepinephrine-stimulated 6-keto-PGF1 alpha synthesis was dependent upon extracellular calcium. Norepinephrine stimulation in Ca2+-free medium did not lead to a significant increase in 6-keto-PGF1 alpha synthesis. However, on the introduction of Ca2+, 6-keto-PGF1 alpha synthesis was restored to its initial level. Phentolamine (10(-6) M) (an alpha-adrenergic antagonist) and trifluroperazine (2.5 X 10(-4) M) (a calmodulin inhibitor) completely inhibited norepinephrine-stimulated 6-keto-PGF1 alpha synthesis, whereas verapamil 3 X 10(-6) M (a calcium channel blocking drug) only partially inhibited synthesis (control, 74 +/- 12; norepinephrine, 437 +/- 260; norepinephrine + verapamil, 123 +/- 8 pg X mg wet weight-1 X 20 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Solanum asterophorum Mart. (Solanaceae) is a shrub popularly known as "jurubeba-defogo" in the northeast of Brazil. In the present work, the methanol extract (SA-MeOH, 3750 microg/mL) and isojuripidine (10(-7) - 3 x 10(-4) M), a steroidal alkaloid obtained from S. asterophorum Mart. leaves, inhibited phasic contractions induced by both 1 microM histamine [IC50 = (225.8 +/- 47.4), g/mL and (3.5 +/- 0.8) x 10(-5) M] or 1 microm acetylcholine [IC50 = (112.5 +/- 20.6) microg/mL and (2.3 +/- 0.4) x 10(-5) M] in guinea-pig ileum, respectively. The extract and isojuripidine also relaxed the ileum (SA-MeOH, 1-750 microg/mL, and isojuripidine, 10(-9) - 3 x 10(-4) M) pre-contracted with 1 M histamine [EC50 = (101.1 +/- 17.4) microg/mL and (1.2 +/- 0.3) x 10(-6) M] or 1 microM acetylcholine [EC50 = (136.8 +/- 21.1) microg/mL and (1.9 +/- 0.4) x 10(-6) M] or 40 mm KCl [EC50 = (149.4 +/- 19.5) microg/mL and (1.8 +/- 0.7) x 10(-6) M], respectively, in an equipotent and concentration-dependent manner. This effect is probably due to inhibition of calcium influx through voltage-operated calcium (Ca(v)) channels. To confirm this hypothesis, we evaluated their effect on cumulative CaCl2 curves in depolarizing medium nominally without Ca2+. SA-MeOH (27, 243, 500, and 750 microg/mL) and isojuripidine (3 x 10(-8), 10(-6), 3 x 10(-5), and 3 x 10(-4) M) inhibited the contractions induced by CaCl2, in a concentration-dependent manner. The concentration-response curves to CaCl2, in the presence of SA-MeOH and isojuripidine, were shifted downward in relation to a control curve in a non-parallel manner resulting in reduction of the maximum effect [E(max) = (71.2 +/- 9.2); (57.4 +/- 9.2); (43.8 +/- 3.4); (41.5 +/- 2.4) and (90.6 +/- 4.8); (74.7 +/- 8.7); (66.4 +/- 3.9); (31.3 +/- 4.1)%, respectively]. SA-MeOH and isojuripidine present spasmolytic action in guinea-pig ileum due to a partially blockade of calcium influx through Ca(v) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号