首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental studies were carried out on an Antarctic isolate of the heterotrophic nanoflagellate Paraphysomonas imperforata to examine the efficiency of incorporation and remineralization of nitrogen and phosphorus from bacterial prey. Experiments were carried out over a temperature range from ambient Antarctic temperature (0 degrees C) to 10 degrees C. Temperature had a marked effect on the maximal growth rate of the phagotrophic nanoflagellate. Growth rate in the presence of high prey abundance ranged from 0.6 day(-1) at 0 degrees C to 2.6 day(-1) at 10 degrees C. In contrast, temperature had no discernable effect on the efficiencies of incorporation and remineralization of major nutrients by P. imperforata. The efficiencies of phosphorus and nitrogen incorporation from prey biomass averaged over the temperature range examined were 58 and 39%, respectively, for the two elements. Ammonium and phosphate were the dominant forms of dissolved nitrogen and phosphorus appearing in the culture medium during the grazing phase of the experiments. Overall, dissolved organic nitrogen and phosphorus constituted minor components of these elements released by the grazing activities of the protist. The results of this study indicated that incorporation/remineralization of nitrogen and phosphorus contained in prey was relatively unaffected by culture temperature in this heterotrophic nanoflagellate, although low temperature significantly depressed its growth rate. This finding has important implications for energy utilization and elemental cycling in perennially cold ecosystems and is at odds with conclusions that have been reached in some previous studies regarding the growth efficiency of phagotrophic Antarctic protists.  相似文献   

2.
3.
The rate of oxygen uptake in an extreme thermophile at 70 C was three times greater than at 50 C. Cytochromes a, b, and c were present in cells grown at 50, 60, and 70 C. The content of these electron transport system elements remained relatively constant as the growth temperature was raised.  相似文献   

4.
5.
Effect and Aftereffect of Temperature on Respiration of Intact Plants   总被引:3,自引:0,他引:3  
Effects and aftereffects of typical temperatures of cultivar habitat (background temperature), heat-hardening, and cold-hardening temperatures on dark respiration of leaf segments and intact plants were investigated on plant species differing in cold tolerance—cucumber (Cucumis sativus L.), tomato (Lycopersicon esculentum Mill.), cicer milkvetch (Astragalus cicer L.), and narrow-leaved lupine (Lupinus angustifolium L.). At cold-hardening temperatures, the respiratory metabolism underwent rearrangements serving to compensate for elevated energy losses during plant adaptation. This was manifested in the increase in the respiratory coefficient (RC) and the Q 10 coefficient during hardening. The preconditioning of plants at hardening temperatures enhanced O2 uptake and elevated the ratio of growth respiration to maintenance respiration in the post-treatment period. Conversely, temperature variations within the background range had no aftereffect on RC, Q 10, and O2 uptake.  相似文献   

6.
The effect of the deficiency in mineral nutrients was investigated in plant species representing various adaptation groups (stress-tolerant, competitive, and ruderal plants). Dry and fresh weight, as well as the length of shoots and underground organs, were determined in 20- to 50-day-old seedlings. The ratio between the dry weights of shoot and root (SRR), relative growth rate (RGR), the rate of total dark respiration (R), gross photosynthesis (P g), and the proportion of the respiratory expenditures to gross photosynthesis (R/P g) were calculated. When affected by a deficiency in mineral nutrients, the weight of the whole plant decreased. In resistant species of clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.), this reduction was insignificant, whereas, in the ruderal species amaranth (Amaranthus retroflexus L.), it was at its highest. In all the species investigated, the ratio R/P g was 38–46%. Under stress conditions, this index increased. Given a deficiency in mineral nutrients, the changes in SRR, RGR, and R/P g were greater in amaranth, suggesting that this plant species is less tolerant to stress. The correlation between RGR and R observed in amaranth under normal conditions indicates that the major energy expenditures are associated with growth. Under stress conditions, such a correlation was not observed. In more resistant species of clover and alfalfa, a weak positive correlation between RGR and R was observed both under normal and stress conditions. In these species, the deficiency in mineral nutrients probably brought about a reduction in the growth component of total dark respiration and a rise in the adaptation component. The complex of indices (R/P g, RGR, and SRR) and the extent of their variation in the seedlings describe the potential productivity and resistance of particular species to a deficiency in mineral nutrients and may characterize the adaptation type of the plants.  相似文献   

7.
Here we describe artificial help for the respiratory electron flow supporting anaerobic growth of Thiobacillus ferrooxidans through exogenous electrolysis. Flux between H2 and a anode through cells was accomplished with electrochemical regeneration of iron. The electrochemical help resulted in a 12-fold increase in yield compared with the yield observed in its absence.  相似文献   

8.
The formation of adventitious buds and roots in leaf discs of Streptocarpus x bybridus‘Constant Nymph’ were both stimulated by relatively low temperatures (12 and 18°C) applied to isolated discs or to the growing plants before leaf harvest. Auxins also promoted both bud and root formation, the optimum concentration for rooting always being one to two orders of magnitude higher than the optimum for budding. Cytokinins had only a small stimulatory effect on bud formation. At higher concentrations it was inhibitory and even counteracted the stimulatory effect of auxin on bud formation. As usual, root formation was inhibited by cytokinin. GA3 inhibited both bud and root formation but the inhibition was reversible by auxin. In presence of optimum auxin levels abscisic acid enhanced bud formation. It had little effect on root formation except for an inhibition at high concentrations. The effects of exogenous auxin and cytokinin suggest that Streptocarpus leaves have a high and non-limiting level of endogenous cytokinin with auxin as the limiting factor for both root and bud formation. This would also explain the exceptionally high regeneration ability of this plant.  相似文献   

9.
The rate of dry matter accumulation by seeds of Vicia faba L. cv. Minica increases with temperature in the range of 16 to 26°C. The duration of dry matter accumulation decreases with temperature, resulting in a decrease of final seed dry weight. In this study we test the hypothesis that a diffusion barrier for O2, located in the seed coat, inhibits seed respiration and growth. The rate of O2 uptake of intact seeds and of excised embryos and seed coats (separated seeds) was measured in air and buffer at 16, 20, and/or 26°C at various O2 concentrations and developmental stages. Oxygen uptake rates of intact seeds in buffer were only 9 to 15% of those in air. In buffer, the respiration rate of intact seeds decreased at a pO2 below air saturation (21 kilopascals), whereas separated seeds showed a decline of O2 uptake only below 80% of air saturation. In air, embryo excision had no effect on the sensitivity of seed respiration to pO2, at both 20 and 26°C. In air at 20°C, separated and intact seeds showed similar rates of O2 uptake. Oxygen uptake by intact seeds, both halfway and beyond the linear growth phase, showed a temperature coefficient Q10 of 2.3 and was insensitive to pO2 in the range of 80 to 100% of ambient. These results indicate that V. faba seed respiration in air is not limited by the diffusion of O2 into the seed.  相似文献   

10.
Vrede K 《Microbial ecology》2005,49(2):245-256
Limitation of bacterioplankton production by nutrients and temperature was investigated in eight temperate lakes in summer. Six of the lakes were resampled in autumn. The lakes differ in nutrient content, water color, and concentration of dissolved organic carbon. Nutrients (phosphorus, nitrogen, and organic carbon) were added alone and in all possible combinations to filtered lake water inoculated with bacteria from the lake. After incubation for 36–40 h at in situ temperatures (ranging from 7 to 20°C), the response in bacterioplankton production was determined. The effect of increased temperature on bacterioplankton growth was also tested. Bacterioplankton production was often limited by phosphorus alone, organic carbon alone, or the two in combination. Phosphorus limitation of bacterioplankton production was more common in the summer, whereas limitation by organic carbon was more frequently observed in the autumn. There was a close balance between limitation by phosphorus and organic carbon in the epilimnion in the summer. In the hypolimnion in the summer, bacterioplankton growth was primarily phosphorus-limited. The effect of phosphorus additions decreased with increasing phosphorus concentrations in the lakes. However, there were no correlations between the effect of added organic carbon and water color, dissolved organic carbon concentration, or phosphorus concentration. When temperature was low (in the hypolimnion in the summer, and throughout the water column in the autumn) temperature also limited bacterioplankton production. Thus, temperature and inorganic nutrients or organic compounds can limit bacterioplankton growth both alone and simultaneously. However, at low temperatures, temperature is the most important factor influencing bacterioplankton growth.  相似文献   

11.
SYNOPSIS Incubation of Leishmania tarentolae promastigotes in 1.0 μg/ml Berenil for 96 hr resulted in 33% inhibition of cell growth and 42.5% dyskinetoplasty in the cell population. The buoyant density of kinetoplast DNA (kDNA), ρ= 1.703 g/ml, remained unchanged after 96-hr exposure to the drug. Endogenous respiration as well as proline- and glucose-induced respiration dropped markedly after 36-hr exposure to Berenil. This drop occurred 12 hr before the onset of dyskinetoplasty, a result which suggests that this drug adversely affects mitochondrial respiratory activity of the promastigotes.  相似文献   

12.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

13.
The energy relations and heat production during plant growthare analysed in terms of respiration, dry weight, and growth.Wastage respiration and its relationship to this analysis arediscussed The results of microcalorimetric experiments on wheatseedlings are analysed and interpreted.  相似文献   

14.
Slowly and rapidly growing carrot root tissue cultures havebeen found to be similarly sensitive to inhibition by cyanideat 10-4 M in respect of respiration, growth, and potassium absorption.These observations conflict with those of Steward and Millar(1954), who reported that the actively proliferating cultureswere strikingly insensitive to the inhibitor at this level.It is suggested that the failure of these authors to detectany effects of cyanide on their cultures was due to the dilutionof the inhibitor by evaporation.  相似文献   

15.
Growth, Maintenance and Respiration: a Re-interpretation   总被引:7,自引:0,他引:7  
THORNLEY  J. H. M. 《Annals of botany》1977,41(6):1191-1203
The traditional view of respiration being due to the processesof growth and maintenance is questioned. A model is proposedin which plant dry matter is divided into three categories:storage material which may be used for growth; non-degradablestructural material which cannot be recycled, and which is consideredto be inert; and degradable structural material which is assigneda rate constant of degradation, and which is considered to bebiologically active. The model has four parameters: two yieldconstants, and two rate constants, and it has been solved forsteady-state exponential growth in continuous daylight, respirationin the dark, and l4CO2 evolution after a pulse label. Analysisof l4CO2 efflux data leads to the complete definition of themodel. The utility and comparative merits of the suggested viewpointof respiration are discussed.  相似文献   

16.
This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by ~18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed ~10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates.  相似文献   

17.
The growth rate of Pseudomonas fluorescens was greater and continued at lower water activity ( a w) values when glycerol controlled the a w of glucose minimal medium than when the a w was controlled by NaCl and sucrose. Growth was not observed below 0·945, 0·970 and 0·964 a w when glycerol, sucrose and NaCl respectively controlled the a w. The catabolism of glucose, Na lactate and DL-arginine as measured by respirometry was completely inhibited at a w values greater than the minimum for growth when the a w was controlled with NaCl. When the a w was controlled with glycerol, catabolism of the three substrates continued at a w values significantly below the a w for growth on glucose. Catabolism of glucose in the presence of sucrose occurred at a level below the minimum growth a w but catabolism of the other two substrates ceased at a w values greater than the minimum growth a w. Arrhenius plots between 10° and 34°C of the growth rate in glucose minimal medium at 0·98 a w showed that the order of inhibition was sucrose > NaCl > glycerol. The order of inhibition differed when Arrhenius plots of catabolism of glucose was examined between 10° and 34 °C, namely NaCl > sucrose > glycerol. The mechanism of action of solutes controlling a w is discussed.  相似文献   

18.
Spray carnation plants were grown for several weeks under an8 h day/16 h night regime at temperatures of approximately 21°C by day and 6, 17, or 30 °C by night. Subsequently,the rates of photosynthesis and transpiration at 20 °C weresimilar. This contrasts with evidence published for some otherspecies. Night temperature had only a slight effect on the plant's growthrate. Leaf area ratios were also similar between treatmentsand for two intervals covering a 5 week period. At the highnight temperature flowers were initiated sooner and there werefewer side shoots per plant than at the lower temperatures. The implications of these results for the optimization of theclimatic environment are discussed briefly, and the resultsare compared with those reported for other species.  相似文献   

19.
Inorganic nutrient availability and temperature are recognized as major regulators of organic carbon processing by aquatic bacteria, but little is known about how these two factors interact to control bacterial metabolic processes. We manipulated the temperature of boreal humic stream water samples within 0–25°C and measured bacterial production (BP) and respiration (BR) with and without inorganic nitrogen?+?phosphorus addition. Both BP and BR increased exponentially with temperature in all experiments, with Q 10 values varying between 1.2 and 2.4. The bacterial growth efficiency (BGE) showed strong negative relationships with temperature in nutrient-enriched samples and in natural stream water where community-level BP and BR were not limited by nutrients. However, there were no relationships between BGE and temperature in samples where BP and BR were significantly constrained by the inorganic nutrient availability. The results suggest that metabolic responses of aquatic bacterial communities to temperature variations can be strongly dependent on whether the bacterial metabolism is limited by inorganic nutrients or not. Such responses can have consequences for both the carbon flux through aquatic food webs and for the flux of CO2 from aquatic systems to the atmosphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号