首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate alpha-helical state to the stable end form called the beta-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the alpha-helical state. The beta-sheet state can be induced at elevated temperature in the presence of detergent. The structural changes of SC3 were monitored by various mass spectrometry techniques. We show that the so-called second loop of SC3 (C39-S72) has a high affinity for Teflon. Binding of this part of SC3 to Teflon was accompanied by the formation of alpha-helical structure and resulted in low solvent accessibility. The solvent-protected region of the second loop extended upon conversion to the beta-sheet state. In contrast, the C-terminal part of SC3 became more exposed to the solvent. The results indicate that the second loop of class I hydrophobins plays a pivotal role in self-assembly at the hydrophilic-hydrophobic interface. Of interest, this loop is much smaller in case of class II hydrophobins, which may explain the differences in their assembly.  相似文献   

2.
Mycelial fungi secrete small, cysteine-rich, proteins, called hydrophobins, that self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, highly insoluble in case of Class I hydrophobins. By self-assembly at the culture medium-air interface they greatly lower the surface tension enabling emergent structures to grow into the air. By self-assembly at the interface between the hydrophilic cell wall and the air or any other hydrophobic environment, these emergent structures are coated with a hydrophobin membrane. These properties allow hydrophobins to fulfil a broad spectrum of functions in fungal development. They are involved in formation of aerial (reproductive) structures, in aerial dispersion of spores, and they line air channels within fruiting bodies with a hydrophobic coating, probably serving gas exchange. Hydrophobins also mediate hyphal attachment to hydrophobic surfaces such as those of plants. Moreover, they appear involved in complex interhyphal interactions, and in interactions with algae in lichens. Their resistance towards chemical and enzymatic treatments suggests that assembled hydrophobins also protect fungal emergent structures against adverse environmental conditions.  相似文献   

3.
Hydrophobins are small fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes that, in the case of Class I hydrophobins, can be disassembled only by treatment with agents like pure trifluoroacetic acid. Here we characterize, by spectroscopic techniques, the structural changes that occur upon assembly at an air/water interface and upon assembly on a hydrophobic solid surface, and the influence of deglycosylation on these events. We determined that the hydrophobin SC3 from Schizophyllum commune contains 16-22 O-linked mannose residues, probably attached to the N-terminal part of the peptide chain. Scanning force microscopy revealed that SC3 adsorbs specifically to a hydrophobic surface and cannot be removed by heating at 100 degrees C in 2% sodium dodecyl sulfate. Attenuated total reflection Fourier transform infrared spectroscopy and circular dichroism spectroscopy revealed that the monomeric, water-soluble form of the protein is rich in beta-sheet structure and that the amount of beta-sheet is increased after self-assembly on a water-air interface. Alpha-helix is induced specifically upon assembly of the protein on a hydrophobic solid. We propose a model for the formation of rodlets, which may be induced by dehydration and a conformational change of the glycosylated part of the protein, resulting in the formation of an amphipathic alpha-helix that forms an anchor for binding to a substrate. The assembly in the beta-sheet form seems to be involved in lowering of the surface tension, a potential function of hydrophobins.  相似文献   

4.
Hydrophobins are fungal proteins that self-assemble spontaneously at hydrophilic-hydrophobic interfaces and change the polar nature of the surfaces to which they attach. This attribute can be used to introduce hydrophobic foci on the surface of hydrophilic supports where hydrophobins are attached by covalent binding. In this paper, we report the binding of Pleurotus ostreatus hydrophobins to a hydrophilic matrix (agarose) to construct a support for noncovalent immobilization and activation of lipases from Candida antarctica, Humicola lanuginosa, and Pseudomonas flourescens. Lipase immobilization on agarose-bound hydrophobins proceeded at very low ionic strength and resulted in increased lipase activity and stability. The enzyme could be desorbed from the support using moderate concentrations of Triton X-100, and its enantioselectivity was similar to that of lipases interfacially immobilized on conventional hydrophobic supports. These results suggest that lipase adsorption on hydrophobins follows an "interfacial activation" mechanism; immobilization on hydrophobins offers new possibilities for lipase study and modulation and reveals a new application for fungal hydrophobins.  相似文献   

5.
Hydrophobins self assemble into amphipathic films at hydrophobic-hydrophilic interfaces. These proteins are involved in a broad range of processes in fungal development. We have studied the conformational changes that accompany the self-assembly of the hydrophobin SC3 with polarization-modulation infrared reflection absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and circular dichroism, and related them to changes in morphology as observed by electron microcopy. Three states of SC3 have been spectroscopically identified previously as follows: the monomeric state, the alpha-helical state that is formed upon binding to a hydrophobic solid, and the beta-sheet state, which is formed at the air-water interface. Here, we show that the formation of the beta-sheet state of SC3 proceeds via two intermediates. The first intermediate has an infrared spectrum indistinguishable from that of the alpha-helical state of SC3. The second intermediate is rich in beta-sheet structure and has a featureless appearance under the electron microscope. The end state has the same secondary structure, but is characterized by the familiar 10-nm-wide rodlets.  相似文献   

6.
Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in β-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in β-sheet characteristic of the amyloid cross-β structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.  相似文献   

7.
Hydrophobins are small (ca. 100 amino acids) secreted fungal proteins that are characterized by the presence of eight conserved cysteine residues and by a typical hydropathy pattern. Class I hydrophobins self-assemble at hydrophilic-hydrophobic interfaces into highly insoluble amphipathic membranes, thereby changing the nature of surfaces. Hydrophobic surfaces become hydrophilic, while hydrophilic surfaces become hydrophobic. To see whether surface properties of assembled hydrophobins can be changed, 25 N-terminal residues of the mature SC3 hydrophobin were deleted (TrSC3). In addition, the cell-binding domain of fibronectin (RGD) was fused to the N terminus of mature SC3 (RGD-SC3) and TrSC3 (RGD-TrSC3). Self-assembly and surface activity were not affected by these modifications. However, physiochemical properties at the hydrophilic side of the assembled hydrophobin did change. This was demonstrated by a change in wettability and by enhanced growth of fibroblasts on Teflon-coated with RGD-SC3, TrSC3, or RGD-TrSC3 compared to bare Teflon or Teflon coated with SC3. Thus, engineered hydrophobins can be used to functionalize surfaces.  相似文献   

8.
Hydrophobins fulfill a wide spectrum of functions in fungal growth and development. These proteins self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. Hydrophobins are divided into two classes based on their hydropathy patterns and solubility. We show here that the properties of the class II hydrophobins HFBI and HFBII of Trichoderma reesei differ from those of the class I hydrophobin SC3 of Schizophyllum commune. In contrast to SC3, self-assembly of HFBI and HFBII at the water-air interface was neither accompanied by a change in secondary structure nor by a change in ultrastructure. Moreover, maximal lowering of the water surface tension was obtained instantly or took several minutes in the case of HFBII and HFBI, respectively. In contrast, it took several hours in the case of SC3. Oil emulsions prepared with HFBI and SC3 were more stable than those of HFBII, and HFBI and SC3 also interacted more strongly with the hydrophobic Teflon surface making it wettable. Yet, the HFBI coating did not resist treatment with hot detergent, while that of SC3 remained unaffected. Interaction of all the hydrophobins with Teflon was accompanied with a change in the circular dichroism spectra, indicating the formation of an alpha-helical structure. HFBI and HFBII did not affect self-assembly of the class I hydrophobin SC3 of S. commune and vice versa. However, precipitation of SC3 was reduced by the class II hydrophobins, indicating interaction between the assemblies of both classes of hydrophobins.  相似文献   

9.
Surface Modifications Created by Using Engineered Hydrophobins   总被引:1,自引:0,他引:1       下载免费PDF全文
Hydrophobins are small (ca. 100 amino acids) secreted fungal proteins that are characterized by the presence of eight conserved cysteine residues and by a typical hydropathy pattern. Class I hydrophobins self-assemble at hydrophilic-hydrophobic interfaces into highly insoluble amphipathic membranes, thereby changing the nature of surfaces. Hydrophobic surfaces become hydrophilic, while hydrophilic surfaces become hydrophobic. To see whether surface properties of assembled hydrophobins can be changed, 25 N-terminal residues of the mature SC3 hydrophobin were deleted (TrSC3). In addition, the cell-binding domain of fibronectin (RGD) was fused to the N terminus of mature SC3 (RGD-SC3) and TrSC3 (RGD-TrSC3). Self-assembly and surface activity were not affected by these modifications. However, physiochemical properties at the hydrophilic side of the assembled hydrophobin did change. This was demonstrated by a change in wettability and by enhanced growth of fibroblasts on Teflon-coated with RGD-SC3, TrSC3, or RGD-TrSC3 compared to bare Teflon or Teflon coated with SC3. Thus, engineered hydrophobins can be used to functionalize surfaces.  相似文献   

10.
Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets.  相似文献   

11.
Hydrophobins are fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes. These assemblages are extremely stable and posses the remarkable ability to invert the polarity of the surface on which they are adsorbed. Neither the three-dimensional structure of a hydrophobin nor the mechanism by which they function is known. Nevertheless, there are experimental indications that the self-assembled form of the hydrophobins SC3 and EAS at a water/air interface is rich with beta-sheet secondary structure. In this paper we report results from molecular dynamics simulations, showing that fully extended SC3 undergoes fast (approximately 100 ns) folding at a water/hexane interface to an elongated planar structure with extensive beta-sheet secondary elements. Simulations in each of the bulk solvents result in a mainly unstructured globular protein. The dramatic enhancement in secondary structure, whether kinetic or thermodynamic in origin, highlights the role interfaces between phases with large differences in polarity can have on folding. The partitioning of the residue side-chains to one of the two phases can serve as a strong driving force to initiate secondary structure formation. The interactions of the side-chains with the environment at an interface can also stabilize configurations that otherwise would not occur in a homogenous solution.  相似文献   

12.
The hydrophobin DewA from the fungus Aspergillus nidulans is a highly surface-active protein that spontaneously self-assembles into amphipathic monolayers at hydrophobic:hydrophilic interfaces. These monolayers are composed of fibrils that are a form of functional amyloid. While there has been significant interest in the use of DewA for a variety of surface coatings and as an emulsifier in biotechnological applications, little is understood about the structure of the protein or the mechanism of self-assembly. We have solved the solution NMR structure of DewA. While the pattern of four disulfide bonds that is a defining feature of hydrophobins is conserved, the arrangement and composition of secondary-structure elements in DewA are quite different to what has been observed in other hydrophobin structures. In addition, we demonstrate that DewA populates two conformations in solution, both of which are assembly competent. One conformer forms a dimer at high concentrations, but this dimer is off-pathway to fibril formation and may represent an assembly control mechanism. These data highlight the structural differences between fibril-forming hydrophobins and those that form amorphous monolayers. This work will open up new opportunities for the engineering of hydrophobins with novel biotechnological applications.  相似文献   

13.
Hydrophobins are small surface active proteins secreted by filamentous fungi. Because of their ability to self-assemble at hydrophilic-hydrophobic interfaces, hydrophobins play a key role in fungal growth and development. In the present work, the organization in aqueous solution of SC3 hydrophobins from the fungus Schizophyllum commune was assessed using Dynamic Light Scattering, Atomic Force Microscopy and fluorescence spectroscopy. These complementary approaches have demonstrated that SC3 hydrophobins are able not only to spontaneously self-assemble at the air-water interface but also in pure water. AFM experiments evidenced that hydrophobins self-assemble in solution into nanorods. Fluorescence assays with thioflavin T allowed establishing that the mechanism governing SC3 hydrophobin self-assembly into nanorods involves β-sheet stacking. SC3 assembly was shown to be strongly influenced by ionic strength and solution pH. The presence of a very low ionic strength significantly favoured the protein self-assembly but a further increase of ions in solution disrupted the protein assembly. It was assessed that solution pH had a significant effect on the SC3 hydrophobins organization. In peculiar, the self-assembly process was considerably reduced at acidic pH. Our findings demonstrate that the self-assembly of SC3 hydrophobins into nanorods of well-defined length can be directly controlled in solution. Such control allows opening the way for the development of new smart self-assembled structures for targeted applications.  相似文献   

14.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

15.
Hydrophobins are fungal proteins that self‐assemble spontaneously to form amphipathic monolayers at hydrophobic:hydrophilic interfaces. Hydrophobin assemblies facilitate fungal transitions between wet and dry environments and interactions with plant and animal hosts. NC2 is a previously uncharacterized hydrophobin from Neurospora crassa. It is a highly surface active protein and is able to form protein layers on a water:air interface that stabilize air bubbles. On a hydrophobic substrate, NC2 forms layers consisting of an ordered network of protein molecules, which dramatically decrease the water contact angle. The solution structure and dynamics of NC2 have been determined using nuclear magnetic resonance spectroscopy. The structure of this protein displays the same core fold as observed in other hydrophobin structures determined to date, including the Class II hydrophobins HFBI and HFBII from Trichoderma reesei, but certain features illuminate the structural differences between Classes I and II hydrophobins and also highlight the variations between structures of Class II hydrophobin family members. The unique properties of hydrophobins have attracted much attention for biotechnology applications. The insights obtained through determining the structure, biophysical properties and assembly characteristics of NC2 will facilitate the development of hydrophobin‐based applications. Proteins 2014; 82:990–1003. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Amphipathic fungal proteins called hydrophobins are able to self-assemble into insoluble supramolecular structures at hydrophobic/hydrophilic interfaces, but the molecular mechanism and underlying protein conformation changes are not known. Secondary-structure prediction indicated that hydrophobin Sc3 is an all-beta protein. Many amyloidogenic proteins self-assemble into insoluble amyloid fibrils while undergoing a change to an all-beta conformation. In this study we show that two dyes, thioflavin T, and Congo red, which are widely used for specific detection of stacked beta sheets, interact with Sc3 assemblies in the same way as with the amyloid beta-sheet fibrils. We conclude that Sc3, and probably other hydrophobins too, self-assemble at interfaces in the same manner as amyloidogenic proteins, i.e., through beta-sheet stacking.  相似文献   

17.
Class I fungal hydrophobins are small surface‐active proteins that self‐assemble to form amphipathic monolayers composed of amyloid‐like rodlets. The monolayers are extremely robust and can adsorb onto both hydrophobic and hydrophilic surfaces to reverse their wettability. This adherence is particularly strong for hydrophobic materials. In this report, we show that the class I hydrophobins EAS and HYD3 can self‐assemble to form a single‐molecule thick coating on a range of nanomaterials, including single‐walled carbon nanotubes (SWCNTs), graphene sheets, highly oriented pyrolytic graphite, and mica. Moreover, coating by class I hydrophobin results in a stable, dispersed preparation of SWCNTs in aqueous solutions. No cytotoxicity is detected when hydrophobin or hydrophobin‐coated SWCNTs are incubated with Caco‐2 cells in vitro. In addition, we are able to specifically introduce covalently linked chemical moieties to the hydrophilic side of the rodlet monolayer. Hence, class I hydrophobins provide a simple and effective strategy for controlling the surfaces of a range of materials at a molecular level and exhibit strong potential for biomedical applications. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Filamentous fungi utilize small amphiphilic proteins called hydrophobins in their adaptation to the environment. The hydrophobins are used to form coatings on various fungal structures, lower the surface tension of water, and to mediate surface attachment. Hydrophobins function through self-assembly at interfaces, for example, at the air-water interface, and at fungal cellular structures. Despite their high tendency to self assemble at interfaces, hydrophobins can be very soluble in water. To understand the mechanism of hydrophobin self-assembly, in this work, we have studied the behavior of two Trichoderma reesei hydrophobins, HFBI and HFBII in aqueous solution. The main methods used were F?rster resonance energy transfer (FRET) and size exclusion chromatography. A genetically engineered HFBI variant, NCys-HFBI, was utilized for the site-specific labeling of dyes for the FRET experiments. We observed the multimerization of HFBI in a concentration-dependent manner. A change from monomers to tetramers was seen when the hydrophobin concentration was increased. Interaction studies between HFBI and HFBII suggested that at low concentrations homodimers are preferred, and at higher concentrations, the heterotetramers of HFBI and HFBII are formed. In conclusion, the results support the model where hydrophobins in aqueous solutions form multimers by hydrophobic interactions. In contrast to micelles formed by detergents, the hydrophobin multimers are defined in size and involve specific protein-protein interactions.  相似文献   

19.
Fibrillar inclusions are a characteristic feature of the neuropathology found in the alpha-synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Familial forms of alpha-synucleinopathies have also been linked with missense mutations or gene multiplications that result in higher protein expression levels. In order to form these fibrils, the protein, alpha-synuclein (alpha-syn), must undergo a process of self-assembly in which its native state is converted from a disordered conformer into a beta-sheet-dominated form. Here, we have developed a novel polypeptide property calculator to locate and quantify relative propensities for beta-strand structure in the sequence of alpha-syn. The output of the algorithm, in the form of a simple x-y plot, was found to correlate very well with the location of the beta-sheet core in alpha-syn fibrils. In particular, the plot features three peaks, the largest of which is completely absent for the nonfibrillogenic protein, beta-syn. We also report similar significant correlations for the Alzheimer's disease-related proteins, Abeta and tau. A substantial region of alpha-syn is capable [corrected] of converting from its disordered conformation into a long [corrected] alpha-helical protein. We have developed the aforementioned algorithm to locate and quantify the alpha-helical hydrophobic moment in the amino acid sequence of alpha-syn. As before, the output of the algorithm, in the form of a simple x-y plot, was found to correlate very well with the location of alpha-helical structure in membrane bilayer-associated alpha-syn.  相似文献   

20.
Kerth A  Erbe A  Dathe M  Blume A 《Biophysical journal》2004,86(6):3750-3758
The linear sequence KLAL (KLALKLALKALKAALKLA-NH(2)) and its corresponding d,l-isomers k(9)a(10)-KLAL (KLALKLALkaLKAALKLA-NH(2)) and l(11)k(12)-KLAL (KLALKLALKAlkAALKLA-NH(2)) are model compounds for potentially amphipathic alpha-helical peptides which are able to bind to membranes and to increase the membrane permeability in a structure- and target-dependent manner (Dathe and Wieprecht, 1999) We first studied the secondary structure of KLAL and its analogs bound to the air/water using infrared reflection absorption spectroscopy. For the peptide films the shape and position of the amide I and amide II bands indicate that the KLAL adopts at large areas per molecule an alpha-helical secondary structure, whereas at higher surface pressures or smaller areas it converts into a beta-sheet structure. This transition could be observed in the compression isotherm as well as during the adsorption at the air/water interface from the subphase as a function of time. The secondary structures are essentially orientated parallel to the air/water interface. The analogs with d-amino acids in two different positions of the sequence, k(9)a(10)-KLAL and l(11)k(12)-KLAL, form only beta-sheet structures at all surface pressures. The observed results are interpreted using a comparison of hydrophobic moments calculated for alpha-helices and beta-sheets. The differences between the hydrophobic moments calculated using the consensus scale are not large. Using the optimal matching hydrophobicity scale or the whole-residue hydrophobicity scale the beta-sheet even has the larger hydrophobic moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号