首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of human chromosomal constitutive heterochromatin   总被引:2,自引:0,他引:2  
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.  相似文献   

2.
Specimens of the Savi pine vole (Microtus savii) were collected from three localities in central (Pisa and Viterbo) and southern Italy (Rosarno, Calabria) and were karyotyped using G-, C-, DA/DAPI-, and AluI-banding. All karyotypes had 2n = 54 chromosomes and seemingly identical autosomal banding. The sex chromosomes of the southern Italian specimens, M. savii brachycercus, showed additional large blocks of heterochromatin. In the northern specimens, M. savii savii, the X chromosome is metacentric, whereas in the southern specimens of M. savii brachycercus the X chromosome is a much larger submetacentric chromosome, and the Y chromosome is more than twice the size of the Y in the northern specimens. DA/DAPI staining reveals three levels of fluorescent intensity in the sex chromosomes of the Calabrian specimens. The sex chromosomes of M. savii brachycercus also have the only AluI bands seen in either chromosome set. These data suggest a heterogeneous origin and composition of the C-band regions of these chromosomes. Preliminary data suggest that fertility is reduced in crosses between the two karyomorphs.  相似文献   

3.
Using G bands, some homologies between the chromosomes of Cebus apella (CAP) and human chromosomes are difficult to establish. To solve this problem, we analyzed these homologies by fluorescence in situ hybridization using human whole chromosome probes (ZOO-FISH). The results indicated that 1) the human probe for chromosome 2 partially hybridizes with CAP chromosomes 13 and 5, 2) the human probe for chromosome 3 partially hybridizes with CAP chromosomes 18 and 20, 3) the human probe for chromosome 9 partially hybridizes with CAP chromosome 19, and 4) the human probe for chromosome 14 hybridizes with the p-terminal and q-terminal regions of CAP chromosome 6. However, none of the human probes employed hybridized with the heterochromatic regions of CAP chromosomes. For this reason, we characterized the heterochromatic regions of CAP chromosomes and of the chromosomes of Pan troglodytes (PTR), to allow comparison between CAP, PTR, and human chromosomes using in situ digestion of fixed chromosomes with the restriction enzymes AluI, HaeIII, and RsaI and by fluorescent staining with DA/DAPI. The results show that 1) centromeric heterochromatin is heterogeneous in the three species studied and 2) noncentromeric heterochromatin is homogeneous within each of the three species, but is different for each species. Thus, centromeric heterochromatin undergoes a higher degree of variability than noncentromeric heterochromatin.  相似文献   

4.
Summary Seven dicentric bisatellited marker chromosomes, ascertained at amniocentesis, chorionic villus sampling, and in blood from an abnormal liveborn were characterized cytogenetically. All seven markers demonstrated brilliant bands by the DA/DAPI technique corresponding to C-band positive regions. Although some dicentric DA/DAPI-positive bisatellited markers have been identified as inverted duplicated 15s, recent literature has suggested that DA/DAPI lacks specificity for chromosome 15. Our evaluation of DA/DAPI-positive bisatellited marker chromosomes by in situ hybridization shows that some originate from chromosome 15 whereas DA/DAPI negative bisatellited markers may not be derived from 15. The morphological variations noted in our studies are discussed with respect to nomenclature.  相似文献   

5.
Human metaphase chromosomes, fixed on slides, have beent treated with 8 different restriction endonucleases and 29 combinations of 2 restriction enzymes prior to staining with Giemsa. The endonucleases AluI and DdeI and the combinations AluI + DdeI, AluI + HaeIII, AluI + HinfI, and AluI + MboI have then been used to digest metaphase chromosomes of nine individuals with C-band variants of chromosomes 1 or 9, obtained by the CBG technique. The restriction enzyme resistant chromatin of the paracentromeric regions of chromosomes 1 and 9 has been measured and compared with the corresponding CBG-bands. The size of the enzyme resistant chromatin regions depend upon the type of enzyme(s) used. Treatment with AluI + MboI was the only digestion that acted differently on different chromosome pairs. However, within one pair of homologous chromosomes, all digestions revealed the same variations as conventional C-banding.  相似文献   

6.
The heteromorphisms of C-band regions of human chromosomes are evaluated by means of restriction endonucleases AluI, DdeI, MboI, and RsaI. Every chromosome exhibits heteromorphic markers of the C-band regions except chromosome 8. Each enzyme was found to be highly characteristic in its staining profile, a result that clearly suggests the diversity of heterochromatin. The inherent C-band-region heterochromatin variability that is revealed by these enzymes provides a valuable tool in identifying markers as compared with other previously described techniques.  相似文献   

7.
Summary A series of partial inversions of the heterochromatic C-band of chromosome 9 have been stained with distamycin A plus 4,6-diamidino-2-phenyl-indol-2 HCl (DA/DAPI) and found to consist of three classes: (a) those in which only the C-band in the long arm fluoresces with DA/DAPI (these are the most frequent), (b) those in which only the C-band in the short arm fluoresces with DA/DAPI, and (c) those in which the C-bands in both arms fluoresce with DA/DAPI.There are also differences in the satellite DNA content of each type of inversion as measured by hybridisation in situ. Types (a) and (b) have satellite DNA contents similar to those of their normal homologues, while type (c) has a satellite DNA content almost double that of the normal homologue.It appears that DA/DAPI specifically stains heterochromatin that contains satellite DNA.The ability to distinguish these three types of inversion may help to resolve the question of the clinical significance of such inversions.  相似文献   

8.
9.
Structural organization of the heterochromatic region of human chromosome 9   总被引:2,自引:0,他引:2  
Giemsa-11, G-banding and Lateral Asymmetry staining techniques were used to define the substructure of the C-band heterochromatin of human chromosome 9, in a sample of 108 different chromosomes 9, from 54 individuals. In this sample, the juxtacentromeric portion of the C-band region stained positive by the G-banding technique while Giemsa-11 delineated a more distally located block. Examination of the pericentric inversions generally revealed that the entire C-band region is changed with the substructural organization left intact; i.e. the G-band is proximal, the G-11 distal to the centromere. The partial pericentric inversions were found to have larger than average amounts of G-band heterochromatin on the short arm. The G-11 staining was in its usual position on the long arm with none on the short arm. Such apparent inversions therefore may not represent true inversions. — Long heterochromatic regions frequently had a segmented appearance when stained with G-11; there was a dark G-band within the pale heterochromatic region when stained with the G-banding technique which corresponded in location to the achromatic gap produced by G-11. This extra G-band may have been derived from the juxtacentromeric G-band by processes analogous to unequal crossing over. — Simple lateral asymmetry was consistently present only in the G-band heterochromatin of those chromosomes 9 containing large blocks of G-band positive material. Examination of the portion of the C-band which would correspond to the G-11 positive material revealed no consistent patterns of asymmetry. Usually both strands were heavily stained and symmetrical but occasionally there were light areas present on one strand suggestive of compound lateral asymmetry.  相似文献   

10.
BACKGROUND AND AIMS: Selaginella is the largest genus of heterosporous pteridophytes, but karyologically the genus is known only by the occurrence of a dysploid series of n=7-12, and a low frequency of polyploids. Aiming to contribute to a better understanding of the structural chromosomal variability of this genus, different staining methods were applied in species with different chromosome numbers. METHODS: The chromosome complements of seven species of Selaginella were analysed and, in four of them, the distribution of 45S rDNA sites was determined by fluorescent in situ hybridization. Additionally, CMA/DA/DAPI and silver nitrate staining were performed to investigate the correlation between the 45S rDNA sites, the heterochromatic bands and the number of active rDNA sites. KEY RESULTS: The chromosome numbers observed were 2n=18, 20 and 24. The species with 2n=20 exhibited chromosome complement sizes smaller and less variable than those with 2n=18. The only species with 2n=24, S. convoluta, had relatively large and asymmetrical chromosomes. The interphase nuclei in all species were of the chromocentric type. CMA/DA/DAPI staining showed only a weak chromosomal differentiation of heterochromatic bands. In S. willdenowii and S. convoluta eight and six CMA+ bands were observed, respectively, but no DAPI+ bands. The CMA+ bands corresponded in number, size and location to the rDNA sites. In general, the number of rDNA sites correlated with the maximum number of nucleoli per nucleus. Ten rDNA sites were found in S. plana (2n=20), eight in S. willdenowii (2n=18), six in S. convoluta (2n=24) and two in S. producta (2n=20). CONCLUSIONS: The remarkable variation in chromosome size and number and rDNA sites shows that dramatic karyological changes have occurred during the evolution of the genus at the diploid level. These data further suggest that the two putative basic numbers of the genus, x=9 and x=10, may have arisen two or more times independently.  相似文献   

11.
Electron microscopy (EM) of whole mounted mouse chromosomes, light microscopy (LM), and agarose gel electrophoresis of DNA were used to investigate the cytological effect on chromosomes of digestion with the restriction endonucleases (REs) AluI, HinfI, HaeIII and HpaII. Treatment with AluI produces C-banding as seen by LM, cuts DNA into small fragments, and reduces the density of centromeres and disperses the chromatin of the arms as determined by EM. Treatment with HinfI produces C-banding, cuts DNA into slightly larger fragments than does AluI and increases the density of centromeres and disperses the fibres in the chromosomal arms. Exposure to HaeIII produces G- + C-banding, cuts the DNA into large fragments, and results in greater density of centromeres and reduced density of arms. Finally HpaII digestion produces G-like bands, cuts the DNA into the largest fragments found and results in greater density of centromeres and the best preservation of chromosomal arms detected by EM. These results provide evidence for: (1) REs producing identical effects in the LM (AluI and HinfI) produce different effects in the EM. (2) All enzymes appear to affect C-bands but while REs such as AluI reduce the density of these regions, other enzymes such as HpaII, HaeIII or HinfI increase their density. Conformational changes in the chromatin could explain this phenomenon. (3) The appearance of chromosomes in the EM is related to the action of REs on isolated DNA. The more the DNA is cut by the enzyme, the greater the alteration of the chromosomal ultrastructure.  相似文献   

12.
Endonuclease digestion of isolated and unfixed mammalian metaphase chromosomes in vitro was examined as a means to study the higher-order regional organization of chromosomes related to banding patterns and the mechanisms of endonuclease-induced banding. Isolated mouse LM cell chromosomes, digested with the restriction enzymes AluI, HaeIII, EcoRI, BstNI, AvaII, or Sau96I, demonstrated reproducible G- and/or C-banding at the cytological level depending on the enzyme and digestion conditions. At the molecular level, specific DNA alterations were induced that correlated with the banding patterns produced. The results indicate that: (1) chromatin extraction is intimately involved in the mechanism of endonuclease induced chromosome banding. (2) The extracted DNA fragments are variable in size, ranging from 200 bp to more than 4 kb in length. (3) For HaeIII, there appears to be variation in the rate of restriction site cleavage in G- and R-bands; HaeIII sites appear to be more rapidly cleaved in R-bands than in G-bands. (4) AluI and HaeIII ultimately produce banding patterns that reflect regional differences in the distribution of restriction sites along the chromosome. (5) BstNI restriction sites in the satellite DNA of constitutive heterochromatin are not cleaved intrachromosomally, probably reflecting an inaccessibility of the BstNI sites to enzyme due to the condensed nature of this chromatin or specific DNA-protein interactions. This implies that some enzymes may induce banding related to regional differences in the accessibility of restriction sites along the chromosome. (6) Several specific nonhistone protein differences were noted in the extracted and residual chromatin following an AluI digestion. Of these, some nonhistones were primarily detected in the extracted chromatin while others were apparently resistant to extraction and located principally in the residual chromatin. (7) The chromatin in constitutive heterochromatin is transiently resistant to cleavage by micrococcal nuclease.  相似文献   

13.
The karyotype of a prosimian primate, the aye-aye (Daubentonia madagascariensis), is described. Results from a variety of staining methods (Q-, R-, G-, and C-banding, distamycin A/DAPI and methyl-green/DAPI) are reported. Sites of methylation were visualized using antibodies against 5-methylcytosine. Digestion of aye-aye fixed metaphase chromosomes with the restriction endonuclease HaeIII produced G-banding. No other restriction enzymes tested produced clear G- or C-banding patterns. Ag-staining of the nucleolar organizer regions (NORs) revealed the location of rDNA sites on the short arms of the smallest pairs of acrocentric chromosomes, 13p and 14p.  相似文献   

14.
Summary The utility of a newly synthesized chemical variation of DAPI (4-6-diamidino-2-phenyl-indole), D 287/170, for differential staining of constitutive heterochromatin in man is demonstrated. Direct staining of human chromosomes with D 287/170 results in brilliant fluorescence of the paracentromeric C-band of chromosome 9, of a proximal short-arm segment of chromosome 15 and of certain heterochromatic regions in the Y. Bright, but less conspicuous fluorescence is occassionally seen at the centromeres of other chromosomes. The staining differentiation obtained by D 287/170 is very distinct, and the intensity of the fluorescent light is unusually high. The new fluorochrome should prove particularly useful for detecting and analyzing human chromosome 9 heterochromatin at various stages of the cell cycle in normal and structurally altered chromosomes.  相似文献   

15.
Summary Using DAPI staining after pretreatment with distamycin A we detected a familial deficiency of chromosome 16 heterochromatin. A distinct positively staining band, however, was seen after C-banding. Thus, by using these different heterochromatin staining methods, heterogeneity of the constitutive heterochromatin in the centromeric region of human chromosome 16 was indicated. The same C-banding procedure was also applied to a previously described familial deficiency of chromosome 9 heterochromatin evidenced using distamycin A/DAPI staining and G 11 staining (Buys et al., 1979). In this case a C-band appeared to be virtually absent on the relevant chromosome. These staining methods may be valuable tools in the study of chromosome polymorphisms.  相似文献   

16.
Slides pretreated for C-banding and stained with DAPI or CMA3 show different banding patterns in human metaphase chromosomes compared to those obtained with either standard Giemsa C-banding or fluorochrome staining alone. Human chromosomes show C-plus DA-DAPI banding after C-banding plus DAPI and enhanced R-banding after C-banding plus Chromomycin A3 staining. If C-banding preferentially removes certain classes of DNA and proteins from different chromosome domains, C-banding pre-treatment may cause a differential DNA extraction from G- and R-bands in human chromosomes, resulting in a preferential extraction of DNA included in G-bands. This hypothesis is partially supported by the selective cleavage and removal of DNA from R-bands of restriction endonuclease HaeIII with C-banding combined with DAPI or Chromomycin A3 staining. Structural factors relating to regional differences in DNA and/or proteins could also explain these results.  相似文献   

17.
Rainbow trout chromosomes were treated with nine restriction endonucleases, stained with Giemsa, and examined for banding patterns. The enzymes AluI, MboI, HaeIII, HinfI (recognizing four base sequences), and PvuII (recognizing a six base sequence) revealed banding patterns similar to the C-bands produced by treatment with barium hydroxide. The PvuII recognition sequence contains an internal sequence of 4 bp identical to the recognition sequence of AluI. Both enzymes produced centromeric and telomeric banding patterns but the interstitial regions stained less intensely after AluI treatment. After digestion with AluI, silver grains were distributed on chromosomes labeled with [3H]thymidine in a pattern like that seen after AluI-digested chromosomes are stained with Giemsa. Similarly, acridine orange (a dye specific for DNA) stained chromosomes digested with AluI or PvuII in patterns resembling those produced with Giemsa stain. These results support the theory that restriction endonucleases produce bands by cutting the DNA at specific base pairs and the subsequent removal of the fragments results in diminished staining by Giemsa. This technique is simple, reproducible, and in rainbow trout produces a more distinct pattern than that obtained with conventional C-banding methods.  相似文献   

18.
Kim ES  Punina EO  Rodionov AV 《Genetika》2002,38(4):489-496
Chromosome banding patterns of Allium cepa L. were obtained by using fluorochrome combinations chromomycin A3 (CMA) + 4',6-diamidino-2-phenylindole (DAPI), DAPI + actinomycin D (AMD) and propidium iodide (PI) + DAPI. In A. cepa, telomeric heterochromatin displayed dull fluorescence after staining with DAPI and DAPI/AMD. After staining with the GC-specific CMA and AT-specific DAPI, the CMA-positive fluorescence of the NOR region and the telomeric bands of C-heterochromatin was observed. In combination with DAPI, PI, a dye with low AT/GC specificity, produced almost uniform fluorescence of chromosomal arms and heterochromatin, whereas the NOR-adjoining regions displayed bright fluorescence. Denaturation of chromosomal DNA (95 degrees C for 1-3 min) followed by renaturation in the 2 x SSC buffer (37 degrees C, 12 h) altered the chromosome fluorescence patterns: specific PI-positive bands appeared and the contrast of CMA-banding increased. Bright fluorescence of the NOR and adjoining regions was also observed in the case. Three-minute denaturation led also to a bright PI-positive fluorescence of telomeric heterochromatin. The denaturation of chromosomal DNA before staining results in changes of the DAPI fluorescence pattern and in the appearance of DAPI fluorescence in GR-rich NOP regions. The mechanisms underlying the effects of denaturation/renaturation procedures on chromosome banding patterns obtained with different fluorochromes are discussed.  相似文献   

19.
The staining property of pericentromeric heterochromatin of chromosome 18 is compared by C-banding and restriction endonuclease AluI digestion methods. Only a small distal fraction of C-band of chromosome 18 is observed to be resistant to AluI treatment, which positively stained with subsequent Giemsa staining. The resistant fraction is characteristic and usually located toward the short arm. The extensive heterogeneity of constitutive heterochromatin revealed by AluI treatment is useful in demonstrating the heterozygosity of homologous chromosomes. This, in turn, may provide frequent markers to identify the chromosomes 18's. This present approach can be utilized in evaluation of the families to describe the origin of the extra chromosome 18 in Edward syndrome. As an example, one such family has been investigated where the additional chromosome 18 originated due to paternal nondisjunction at meiosis I.  相似文献   

20.
Triple staining with fluorochromes (DA/DAPI/CMA) and C-banding were used to characterize the composition of Pseudonannolene strinatii heterochromatin. C-banding showed C+ bands of different labeling intensity on chromosomes 1 and 2 in some cells. Fluorochrome staining revealed DAPI+ regions corresponding to the C-banding pattern, indicating that the heterochromatin of this species is abundant in AT-rich sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号