首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The porcine pancreatic lipase (PPL) extracts contain a mixture of several lipases. Their fractioning was performed by sequential adsorption via interfacial activation on supports with different hydrophobicity. A protein of 25 KDa was preferentially adsorbed on octyl-Sepharose, another protein of 33 kDa was mainly adsorbed on octadecyl-Sepabeads support, and the PPL was mainly adsorbed on the support bearing phenyl groups. The different immobilized preparations showed different properties and different response due to change in the experimental conditions. Thus, in the hydrolysis of (+/-)-2-hydroxy-4-phenylbutyric acid ethyl ester [(+/-)-1] to produce the corresponding acid [2], the octyl-25KDa preparation showed the best enantioselectivity (E) value (E = 7) at pH 5 and 25 degrees C, whereas the phenyl-PPL was the most enantioselective (E = 10) at pH 5, 4 degrees C, and 10% dioxane. Using different preparations at different pHs it was possible to resolve (+/-)-2-O-butyryl-2-phenylacetic acid [(+/-)-3] with a high E value (E > 100); for example, with octadecyl-33 KDa enzyme at pH 8.  相似文献   

3.
A support having similar amounts of carboxymethyl and amino groups has been prepared and evaluated as an ion exchanger. It has been found that this support was able to adsorb a high amount of protein from a crude extract of proteins (approximately 55%) at pH 5. Moreover, it was able to adsorb approximately 60% of the protein that did not become adsorbed on supports bearing just one kind of ionic groups. The use of divalent cations reinforced the adsorption of proteins on these supports. These results suggest that the adsorption of proteins on supports bearing almost neutral charge is not driven by the existence of opposite charges between the adsorbent and the biomacromolecule but just by the possibility of forming a high number of enzyme-support ionic bonds. This support has been used to purify the enzyme penicillin G acylase (PGA) from Escherichia coli. PGA was not significantly adsorbed at any pH value on either amino- or carboxyl-activated supports, while it can be fully adsorbed at pH 5 on this new carboxyl-amino matrix. Thus, we have been able to almost fully purify PGA from crude extracts with a very high yield by using these new supports.  相似文献   

4.
The combination of magnetic nanoparticles and mesoporous silica can present a strategy for enzyme immobilization. In this work, magnetic siliceous mesocellular foam functionalized with octyl groups was prepared and used as support for lipase adsorption. Almost all the active lipases in crude enzyme solution were adsorbed by this magnetically separable, hydrophobic siliceous mesocellular foam. The resolution of 1-phenylethanol acylated with vinyl acetate can be achieved in 1.5 h using the resultant magnetic biocatalyst, whereas only 30% conversion was obtained by using the free lipase under the identical reaction conditions. These results are probably due to the “interfacial adsorption” and “hyper-activation” of lipase on the hydrophobic surface of the magnetic siliceous mesocellular foam. Moreover, the biocatalyst entrapped in the nanopores of this foam can be recycled magnetically for at least seven times without significant loss of its activity and enantioselectivity.  相似文献   

5.
A cross-reactivity between animal and plant lipases was determined, using immunological techniques. It was shown by ELISA and dot-blotting that these antibodies react with lipases in the rapeseed crude extract and in the different cellular fractions obtained by differential centrifugation. Pre-incubation of the antiserum with the rapeseed crude extract affects the amount of antibodies binding to the porcine pancreatic lipase. Antibodies were able to precipitate lipase activity from 3-day-old rapeseed crude extract. These epitopes seem to be located in the catalytic site, suggesting that a consensus sequence exists in oleaginous lipases and that it will be universal.  相似文献   

6.
New tailor-made anionic exchange resins have been prepared, based on films of large polyethylenimine polymers (e.g., MW 25,000) completely coating, via covalent immobilization, the surface of different porous supports (agarose, silica, polymeric resins). Most proteins contained in crude extracts from different sources have been very strongly adsorbed on them. Ionic exchange properties of such composites strongly depend on the size of polyethylenimine polymers as well as on the exact conditions of the covalent coating of the solids with the polymer. On the contrary, similar coating protocols yield similar matrices by using different porous supports as starting material. For example, 77% of all proteins contained in crude extracts from Escherichia coli were adsorbed, at low ionic strength, on the best matrices, and less than 15% of the adsorbed proteins were eluted from the support in the presence of 0.3 M NaCl. Under these conditions, 100% of the adsorbed proteins were eluted from conventional DEAE supports. Such polyethylenimine-support composites were also very suitable to perform very strong and nondistorting reversible immobilization of industrial enzymes. For example, lipase from Candida rugosa (CRL), beta-galactosidase from Aspergillus oryzae and D-amino acid oxidase (DAAO) from Rhodotorula gracilis, were adsorbed on such matrices in a few minutes at pH 7.0 and 4 degrees C. Immobilized enzymes preserved 100% of catalytic activity and remained fully immobilized in 0.2 M NaCl. In addition to that, CRL and DAAO were highly stabilized upon immobilization. Stabilization of DAAO, a dimeric enzyme, seems to be due to the involvement of both enzyme subunits in the ionic adsorption.  相似文献   

7.
This work describes the immobilization of porcine pancreatic lipase (PPL), obtained from crude extract, on silica coated with octyl groups (OS) by interfacial adsorption, a simple and low-cost immobilization protocol. The biocatalyst PPL-OS was employed to the enzymatic preparation of fatty acid esters of d-xylose, a product used especially in the field of cosmetics and pharmacy, especially dermatology, improving the functionality of epidermal cells. The yields of the immobilization in terms of enzymatic activity and protein concentration (98% and 75%, respectively) suggested that PPL present in the crude extract was selectively immobilized on the octyl-silica support, which allowed the hyperactivation of the biocatalyst (recovered activity, 144%), a phenomenon that may be attributed to the interfacial activation of the enzyme on hydrophobic surfaces. The biocatalyst PPL-OS showed to be very robust in organic medium and at high temperature, which is an extremely important characteristic to produce sugar fatty acid esters from the industrial point of view. The syntheses of xylose fatty esters (oleate, caprylate and butyrate) yielded conversions around 70% after short reaction period (2?h) at 60?°C in tert-butyl alcohol. The biocatalyst, even after incubation at 60?°C for 24?h, could be reused in four esterification cycles of 2-h reaction at 60?°C, maintaining 100% of its catalytic activity.  相似文献   

8.
It has been found that the enzymes penicillin G acylase from Escherichia coli (PGA) and lipase from Bacillus thermocatenulatus (BTL) did not significantly adsorb on highly activated amino-agarose beads at pH 7 (a support where 85–90% of a crude extract of proteins become adsorbed). Moreover, it has been found that these enzymes do not covalently immobilize on highly activated epoxy-agarose beads at pH 7. However, both enzymes slowly immobilize on heterofunctional supports having a high density of amino–epoxy groups. The immobilized enzymes retain a high percentage of activity (more than 90% for PGA and 60% for BTL). On the other hand, the immobilization of a crude extract of proteins on amino–epoxy supports under conditions where only a limited protein ionic exchange was permitted (by using high ionic strength or lowly activated supports), also permitted a similar high immobilization yield of the proteins. Similarly, glutamate dehydrogenase (GDH) and β-galactosidase from Thermus thermophilus can be fully immobilized under conditions where less than 20% of these enzymes can be ionically exchanged in the aminated support. The results suggested that the percentage of proteins that may be physically adsorbed on the support becomes irreversibly immobilized by the covalent reaction between the nucleophilic groups in the protein surface and the very near epoxy groups of the support (in an almost intramolecular reaction). Thus, using these supports, it is possible to immobilize almost all the proteins by anionic exchange, that is, the area with the highest density in anionic groups. In many cases, this region could not correspond to the protein regions usually utilized to immobilize proteins. This way, it is possible to achieve, in a very simple fashion and without modifying the protein, new orientations of some immobilized enzymes and proteins.  相似文献   

9.
Interest in lipases from microorganisms, animals, and plants has greatly increased in the past decade due to their applications in biotransformations and organic syntheses. We are reporting the purification and characterization of two lipases from the fungus, Ophiostoma piliferum, a saprophytic organism commonly found on wood. A major and a minor lipase have been co-purified by hydrophobic interaction chromatography on octyl sepharose FF, followed by ion exchange chromatography on Q sepharose FF. The lipases bound very tightly to octyl sepharose resulting in greater than 100-fold purification in this one step. The major lipase has a molecular weight of approximately 60 kDa, a pI of 3.79, and is glycosylated as determined by PAS staining. The minor lipase, which composes 10% of the total protein, has a pI of 3.6, and molecular weight of approximately 52 kDa and did not stain with the PAS reagent. Deglycosylation of the major lipase produced two proteins of lower molecular weight, a 55 kDa protein and a 52 kDa protein. The deglycosylated protein at 52 kDa co-migrates with the minor lipase on SDS-PAGE gels. N-terminal amino acid sequencing of the major and minor lipases indicated both lipases have the same N-termini and MALDI-TOF mass spectral analysis showed similar peptide patterns. Available data indicate that the lipases are derived from the same protein and appear to differ in their post-translational modification as evidenced by their pIs and molecular weight difference. The pH rate profile and thermal stability were determined for the purified O. piliferum lipase and were consistent with a mesophilic lipase. In aqueous solution, the lipases exhibited a higher rate of hydrolysis for p-nitrophenylbutyrate (C4) than for p-nitrophenylstearate (C18), which is an unexpected result.  相似文献   

10.
A porous ceramics support, Toyonite 200-M (TN-M), for the immobilization of lipases was prepared hydrothermally from the minerals of kaolinite. Compared with some other commercial solid supports, the TN-M one exhibited better stability and higher selectivity for lipase proteins, and lipase PS (Pseudomonas cepacia) immobilized on the ceramics support showed higher reactivity for organic substrates than the free crude enzyme.  相似文献   

11.
Porcine pancreatic lipase (PPL) and Candida cylindracea lipase (CCL) were immobilized on Celite and Amberlite IRA 938 by deposition from the aqueous solution by the addition of hexane. The influence of the immobilization on the activities of the immobilized lipase derivatives has been studied. The immobilized lipases were used in synthesis of pentyl isovalerates. Various reaction parameters affecting the synthesis of pentyl isovalerates were investigated. The reaction rates were compared with the rates of esterification with free lipases. The immobilized lipases were found to be very effective in the esterification reaction. The lipases immobilized on Celite 545 exhibited better operational stabilities than that of immobilized on Amberlite IRA-938.  相似文献   

12.
The properties of four commercial lipases from Chromobacterium viscosum, CvL 1–4, in ester synthesis were investigated. Three lipases showed a high synthetic activity in esterification, with conversions of oleic acid as high as 86–95% in 24 h, whereas one (CvL 1) gave a poor result of only 11% with the same quantity of 9 mg crude lipase preparation. The elution profiles of the four lipases from Sephacryl S-100 HR differed and SDS-PAGE suggested that while CvL 1 lipase had two equivalent protein bands of molecular size 33 and 27 kDa, respectively, the other three lipases showed only one main protein band of 33 kDa. Isoelectric focusing revealed that all of the lipases contained several isoforms, but the proportions of the isoforms varied. Furthermore, both aggregated and single lipase forms obtained after gel filtration were able to catalyse ester synthesis, but the two lipases from CvL 1 showed lower synthetic activities than the others.  相似文献   

13.
Adsorption of lipases (EC 3.1.1.3) and various proteins at the air-water interface has been investigated in relation to the mechanism of lipase reaction. Aqueous solutions of lipases and denaturated proteins show surface activity as strong as that of synthetic detergents. However, ths surface activity of esterases and various other proteins is little or none. By foam fractionation it was shown that lipases were adsorbed at the air-water interface and the adsorption followed the equation of Langmuir's adsorption isotherm. The properties of lipase at the interface are discussed in relation to the mechanism of lipase reaction and the differences from the esterase reaction.  相似文献   

14.
Abstract

Porcine pancreatic lipase (PPL) and Candida cylindracea lipase (CCL) were immobilized on Celite and Amberlite IRA 938 by deposition from the aqueous solution by the addition of hexane. The influence of the immobilization on the activities of the immobilized lipase derivatives has been studied. The immobilized lipases were used in synthesis of pentyl isovalerates. Various reaction parameters affecting the synthesis of pentyl isovalerates were investigated. The reaction rates were compared with the rates of esterification with free lipases. The immobilized lipases were found to be very effective in the esterification reaction. The lipases immobilized on Celite 545 exhibited better operational stabilities than that of immobilized on Amberlite IRA‐938.  相似文献   

15.
Lipases SP525, AK, LIP, and PS were immobilized on three kinds of mesoporous silicates (FMS, PESO, and SBA) with diameters of 27 to 92 A. The amount of lipase activity adsorbed on these supports was related to the pore size of the silicate. Enantioselectivities of immobilized lipases were similar to those of free lipases, and recycling could be done in both aqueous and organic solvents.  相似文献   

16.
The methacrylate ester of citronellol was synthesized using various lipases as catalyst. The effect of different reaction parameters such as amount of lipase, solvent, temperature, and acylating agent on the conversion of citronellol to citronellyl methacrylate was studied. Methyl methacrylate, vinyl methacrylate, and 2,3-butanedione mono-oxime methacrylate were used as acylating agents. Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Pseudomonas cepacia lipase (Amano-PS) were used as biocatalysts. Diisopropyl ether (DIPE) was found to be the most suitable solvent. The stereoselectivity of CRL in transesterification of (+/-)-citronellol was tested for the optimized reaction parameters.  相似文献   

17.
Immobilization of lipases involves many levels of complications relating to the structure of the active site and its interactions with the immobilization support. Interaction of the so called hydrophobic ‘lid’ with the support has been reported to affect synthetic activity of an immobilized lipase. In this work we evaluate and compare the synthetic activity of lipases from different sources immobilized on different kinds of supports with varying hydrophobicity. Humicola lanuginosa lipase, Candida antarctica lipase B and Rhizomucor miehei lipase were physically adsorbed onto two types of hydrophobic carriers, namely hydrophilic carriers with conjugated hydrophobic ligands, and supports with base matrix hydrophobicity. The prepared immobilized enzymes were used for acylation of n-butanol with oleic acid as acyl donor in iso-octane with variable water content (0–2.8%, v/v) as reaction medium. Enzyme activity and effect of water on the activity of the immobilized derivatives were compared with those of respective soluble lipases and a commercial immobilized lipase Novozyme 435. Both R. miehei and H. lanuginosa immobilized lipases showed maximum activity at 1.39% (v/v) added water concentration. Sepabeads, a methacrylate based hydrophilic support with conjugated octadecyl chain showed highest immobilized esterification (synthetic) activity for all three enzymes, and of the three R. miehei lipase displayed maximum esterification activity comparable to the commercial enzyme.  相似文献   

18.
Two thraustochytrid protists of the genus Thraustochytrium isolated from coastal and mangrove habitats of Goa, India were studied for extracellular alkaline lipase production. Maximum lipase production was supported by a combination of peptone and yeast extract in the growth medium while strong inhibition of enzyme production was observed in presence of glucose. The inducible nature of the enzyme production was evidenced by the requirement of olive oil in the medium. Lipase production was salt-dependent and optimum production required 3.4% (w/v) crude sea salt. Ideal conditions for maximum production of lipases were therefore adopted as incubation at 30 ± 2°C for 168 h at an initial pH of 6.0 in a medium consisting of 0.5% peptone, 0.01% yeast extract, 0.5% olive oil and 3.4% crude salt. Extracellular lipase production by the two thraustochytrid isolates [designated TZ (ATCC #PRA-295) and AH-2 (ATCC #PRA-296)] was increased threefold under these optimized culture conditions. This appears to be the first report on optimization of cultivation conditions for the production of alkaline lipases by thraustochytrids.  相似文献   

19.
20.
Adsorption onto solid supports has proven to be an easy and effective way to improve the mechanical and catalytic properties of lipases. Covalent binding of lipases onto the support surface enhances the active lifetime of the immobilized biocatalysts. Our study indicates that mesoporous silica gels grafted with various functions are ideal supports for both adsorptive and covalent binding for lipase B from Candida antarctica (CaLB). Adsorption of CaLB on phenyl-functionalized silica gels improved in particular its specific activity, whereas adsorption on aminoalkyl-modified silica gels enabling covalent binding with the proper reagents resulted in only moderate specific activity. In addition, adsorption on silica gels modified by mixtures of phenyl- and aminoalkyl silanes significantly increased the productivity of CaLB. Furthermore, CaLB adsorbed onto a phenyl/aminoalkyl-modified surface and then treated with glutardialdehyde (GDA) as cross-linking agent provided a biocatalyst of enhanced durability. Adsorbed and cross-linked CaLB was resistant to detergent washing that would otherwise physically deactivate adsorbed CaLB preparations. The catalytic properties of our best immobilized CaLB variants, including temperature-dependent behavior were compared between 0 and 70 °C with those of two commercial CaLB biocatalysts in the continuous-flow kinetic resolutions of racemic 1-phenylethanol rac-1a and 1-phenylethanamine rac-1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号