首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of the current study were to determine if the pattern of ovarian follicular growth and development in Bos indicus heifers is different to that reported in Bos taurus breeds, and to examine the factors that determine which dominant follicle will ovulate. In addition, the extent to which variation in follicular dynamics is attributable to variation between animals and over time was evaluated. The ovaries of 17 Brahman heifers were examined daily by transrectal ultrasonography using a 7.5 MHz transducer for a total of 117 interovulatory intervals over a period of 10 months. Size and position of individual follicles ⪖5 mm in diameter, and size of corpora lutea (CL) were recorded. Circulating progesterone concentrations were determined from plasma samples obtained twice weekly. Although size of dominant follicles and CL within the ovaries of Bos indicus heifers were smaller than reported for Bos taurus breeds, the overall patterns of dominant follicle growth were similar. There were significant correlations between number of dominant follicles occurring prior to ovulation and time of appearance of the second dominant follicle, duration of detection of CL and size of the ovulatory follicle in the preceding oestrous cycle (P < 0.05). There were significant animal effects on a number of ovarian characteristics including number of dominant follicles per oestrous cycle (P < 0.001), with one heifer having four dominant follicles in more than a third of oestrous cycles observed. In addition, changes in daylength over the 10 month period were related to changes in duration of the interovulatory interval, persistence and maximum diameter of CL and size of ovulatory follicles. Liveweight change over the same period was related to changes in maximum diameter of the first dominant follicle.  相似文献   

2.
Daily transrectal ultrasonographies were conducted to study development of all follicles with antral diameters > or = 2mm during the follicular phase of oestrous cycle in Mouflon, a strictly monovular wild-sheep. A total of 14 follicular phases was studied after oestrus synchronization with two cloprostenol doses, 9 days apart, in five cyclic Mouflon ewes. In 13 cycles (92.8%), the ovulatory follicle arose from those antral follicles present in both ovaries when luteolysis was induced, being the largest one with a mean size of 4.4+/- 0.3mm at that moment in 10 cycles (76.9%). The remaining cycles had a larger follicle, but it was decreasing in size. Appearance of new follicles > or =2mm in size remained unaffected during the follicular phase (3.7+/- 0.2), but there was found a linear decrease in the number of those growing to > or =3mm (2.5+/- 0.4 to 1.1+/- 0.2, P < 0.05) and > or = 4mm (0.6+/- 0.2 to 0.1+/- 0.1, P < 0.005), detection of new follicles growing to > or = 5mm was negligible. Then, number of medium (4-5mm) growing follicles present in both ovaries decreased from 1.5+/- 0.3 at 0 h to 0.3+/- 0.1 at 72 h (P<0.005). In conclusion, the single ovulatory follicle is the largest growing follicle present in both ovaries at the moment of luteolysis. This follicle is selected to grow and ovulate while development of other follicles is inhibited.  相似文献   

3.
Ultrasonography was used to monitor the growth, ovulation and regression of individual ovarian follicles greater than or equal to 5 mm during the late luteal and follicular phases of the oestrous cycle in heifers treated with injections of PGF-2 alpha to induce luteolysis and in heifers undergoing spontaneous luteolysis. Six heifers were given a single injection of PGF-2 alpha between Day 12 and 15 of the oestrous cycle and their ovaries were examined daily by transrectal ultrasonography until ovulation occurred. Another group of 5 heifers was examined daily by ultrasound from Day 14 or 15 of the cycle through spontaneous luteolysis and ovulation. Blood samples were taken twice daily from this group and analysed for progesterone to determine when luteolysis occurred. All heifers were checked for oestrous behaviour twice daily. Mean diameters of ovulatory follicles on each of the 3 days before oestrus were not different between PGF-2 alpha-treated and untreated heifers. In both groups there was large variation among heifers in the sizes and growth rates of the ovulatory follicles. At 3 days before oestrus the diameters of ovulatory follicles were between 7.5 and 11 mm in PGF-2 alpha-treated heifers and between 6 and 11.5 mm in untreated heifers. Non-ovulatory follicles decreased in size during the 3 days before oestrus and the number of non-ovulatory follicles within the size ranges of ovulatory follicles decreased. The ovulatory follicle was not consistently the largest follicle on the ovaries until the day of oestrus but was always one of the 2 largest follicles during the 3 days before oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In the long-term hemicastrate rat, the total number of ova shed during estrus is the same as in the intact rat. To determine if the dynamics of follicular development are the same in the hemicastrate rat as in the intact control rat, the remaining ovary was removed from rats 20 to 30 days after hemiovariectomy. Complete serial sections of each ovary were prepared for histological examination. All follicles greater than or equal to 300 micrometers were counted, measured, and examined for signs of atresia. Long-term hemicastrate rats had a total complement of half as many healthy antral follicles compared to intact rats at estrus. At metestrus, there were half as many small and medium antral follicles in long-term hemicastrates as in controls. However, the total number of large antral follicles was the same in hemicastrate and intact rats. Thus, by metestrus, the appropriate number of follicles for ovulation appears to have been achieved in both animals, with all these large antral follicles located in the one remaining ovary of the hemicastrate rat, while they are distributed between both ovaries of the intact rat. Ovaries of the long-term hemicastrate rats contained far fewer attretic follicles than ovaries of intact rats. These findings suggest that the process of follicular recruitment differs greatly between intact and long-term hemicastrate rats. Atresia of small and medium antral follicles (300-400 micrometers in diameter) is apparently a necessary step in achieving the correct number of ovulatory follicles in the intact rat, yet the hemicastrate rat arrives at the correct number of ovulatory follicles without atresia.  相似文献   

5.
To investigate the factors contributing to the different ovulation rates observed in two strains of sheep (Booroola 5.2, Merino 1.2), in-vivo monitoring of follicular kinetics followed by histological examination of both ovaries was performed during the late luteal and follicular phases. Ewes of both strains were either ovariectomized at Day 13, or had the 3 largest follicles of each ovary ink-labelled at Day 13 and were ovariectomized at Day 15, or had the 3 largest follicles of each ovary ink-labelled at Days 13 and 15 and were ovariectomized 16 h after the beginning of oestrus (N = 6 per time per strain). In another experiment, the age effects on the follicular populations of these two strains were also studied. There were 2-4 times more primordial follicles and 1.5-2 times more preantral follicles in the ovaries of Booroola than in control Merino ewes, although the number of antral follicles was the same. The percentage of normal follicles in this population was higher in Merino than Booroola ovaries. In Booroola ewes, there was no correlation between the number of antral follicles per ovary and the ovulation rate at the previous cycle (r = 0.22). This suggests that follicle numbers do not play a key role in the high ovulation rate of the Booroola strain. The number of follicles initiating growth from the primordial pool, the number of growing follicles disappearing at the preantral stage, the pattern of antrum development, granulosa cell multiplication and appearance of atresia differed between strains. The reasons for the high ovulation rate of the Booroola strain became clear when preovulatory enlargement was followed by ink labelling. An extended period of time during which recruitment of ovulatory follicles takes place, together with a low incidence of selection and the ability of the follicles to wait for ovulation are the features involved in this high ovulation rate.  相似文献   

6.
Ultrasonography of the bovine ovary   总被引:5,自引:0,他引:5  
A linear-array ultrasound scanner with a 5-MHz transducer was evaluated for the study of follicular and luteal status in heifers. The ovaries of five heifers were monitored daily until all heifers were examined for a period from three days before an ovulation to three days after the next ovulation. There was a significant difference among days for diameter of the largest follicle and second largest follicle and for the number of follicles 4-6 mm and >10 mm. Differences seemed to be caused by the presence of several 4- to 6-mm follicles in early diestrus, growth to an ostensibly ovulatory size and subsequent regression of a follicle during mid-cycle, and selective accelerated growth of the ovulatory follicle four days before ovulation. The corpus luteum became visible approximately three days after ovulation and was identifiable throughout the rest of the interovulatory interval. In two of the five heifers, the corresponding corpus albicans was identified for three days after the second ovulation. Two heifers were induced to superovulate and follicular growth was monitored. The results indicated that the follicles which ovulated originated from the population present when the superovulation treatment was initiated. The ultrasound instrument was judged effective for monitoring and evaluating ovarian follicles and corpora lutea in normal and superovulated heifers.  相似文献   

7.
A linear-array ultrasound scanner with a 5-MHz transducer was evaluated for studying follicular and luteal status in mares, and the ultrasonic properties of equine ovaries were characterized. Follicular diameters were estimated in vivo and after removing and slicing six ovaries. Correlation coefficients between the two kinds of determinations were 0.91 for number of follicles >/=2 mm in diameter and 0.95 for diameter of largest follicle. The ovaries of five mares were examined daily until all mares had been examined from three days before an ovulation to three days after the next ovulation. There was a significant difference among days for diameter of largest follicle and second largest follicle and for number of follicles 2-5 mm, 16-20 mm, and >20 mm. Differences seemed to be caused by the presence of many 2- to 5-mm follicles during early diestrus, initiation of growth of large follicles at mid-cycle, selective accelerated growth of an ovulatory follicle beginning five days before ovulation, and regression of large nonovulatory follicles a few days before ovulation. In one of the five mares, the corpus luteum was identified throughout the interovulatory interval, and the corresponding corpus albicans was identified for three days after the second ovulation. In the other four mares, the corpus luteum was last identified an average of 16 days after ovulation or five days before the next ovulation. In a blind study, the location of the corpus luteum (left or right ovary) as determined by ultrasonography agreed with a previous determination of side of ovulation by palpation in 88% of 40 mares on days 0-14. In the remaining 12% and in all of 12 estrous mares, the location was recorded as uncertain. The ultrasound instrument was judged effective for monitoring and evaluating follicles and corpora lutea.  相似文献   

8.
Ovarian follicular development was studied in 13 heifers by daily ultrasound examination during 2 complete and consecutive natural oestrous cycles. In 21 cycles (81%) 3 dominant follicles were identified, in 4 cycles (15%) 2 and in the remaining cycle 1 (4%). Consistently, the first dominant follicle was detected on average on Day 4, reached a maximum size on Day 6, went through a period of relative stability between Days 6 and 10, then began to decrease in size and was undetectable by Day 15. The second dominant follicle was detected by Day 12, reached maximum size on Day 16 (or 19 in the 4 cycles in which the 2nd dominant follicle was the ovulatory follicle) and was undetectable by Day 19. The 3rd (ovulatory) follicle was identified on average by Day 16 (range Days 10 to 19) and maximum size was reached on Day 21. The ovulatory follicles were larger (P less than 0.05) than the previous ones and the stage of the cycle at which maximum size was reached was significantly different for each dominant follicle (P less than 0.05). The analysis of the rates of growth and atresia suggest that the rate of growth is slowest during mid-cycle. The number of dominant follicles that developed in the ovary ipsilateral to the corpus luteum was greater (P less than 0.05) than in the contralateral ovary.  相似文献   

9.
A theory of follicle selection is developed in which all follicles, ovulatory and atretic, inherit the same developmental plan for responding to circulating concentrations of estradiol and gonadotropins. In the model, this plan is represented by a maturation surface that determines the rate of follicle growth as a function of follicle maturity and circulating hormone concentration. Examples of maturation surfaces are constructed for single and multiple spontaneous ovulators. When model follicles are activated from the reserve pool at random times, spontaneous and coordinated cycles of maturation develop in which the number of ovulatory follicles is controlled within a small and predictable range. For a given maturation surface, this range is nearly independent of the number of follicles in the interacting population, their activation times, and their initial maturities. The theory is therefore consistent with Lipschütz's Law of Follicular Constancy. The theory can account for certain statistical effects that occur with age on the timing of ovulation and the control of ovulation number. Maturation surfaces are also constructed that exhibit spontaneous transitions from cyclic to steady anovulatory behavior. The theory predicts an important regulatory role for atretic follicles in controlling both the timing of maturation and the number of follicles that reach ovulatory maturity.  相似文献   

10.
A 16 h daily photoperiod hastened the onset of the ovulatory season (first ovulation); gonadotrophin and follicular changes prior to the onset were similar in intact light-treated and control mares. A preovulatory decline in FSH concentrations before the onset of the ovulatory season preceded the decrease in number of follicles (15--25 mm) and the rise in LH concentrations which was temporally associated with the growth of an ovulatory follicle. Seasonal changes of FSH and LH concentrations were found in ovariectomized mares and were influenced by photoperiod. During the anovulatory season, there was no ovarian influence on gonadotrophin concentrations. However, during the ovulatory season the ovaries exerted a positive influence on seasonally elevated LH concentrations during oestrus and a negative influence during dioestrus. The ovaries exerted a negative influence on seasonally elevated FSH concentrations throughout the oestrous cycle. The onset of the ovulatory season occurred at the time of the first sustained increase in LH concentrations resulting from positive seasonal (increasing photoperiod) and ovarian influences.  相似文献   

11.
Superovulatory response in a bovine model of reproductive aging   总被引:1,自引:0,他引:1  
Two experiments were done to test the hypotheses that aging in cattle is associated with a reduced number of follicles recruited into an ovarian follicular wave, and a reduction in the ovarian response to gonadotropin treatment. Older cows (13-16 years of age) and their daughters (3-6 years of age) were treated with FSH for ovarian superstimulation four times over two consecutive years (31 and 33 superstimulations in old and young cows, respectively, experiments and years combined). In Experiment 1, ovulation was induced using LH. In Experiment 2, cumulus-oocyte complexes were collected by ultrasonographic-guided follicle aspirations before expected ovulations. The ovarian follicular and ovulatory responses were monitored daily by ultrasonography. Fewer 2-5mm follicles (P<0.01) were detected at the expected time of follicular wave emergence in older cows than in their daughters. After superstimulation, older cows had fewer follicles >or=6mm (P<0.01), and tended (P=0.1) to have fewer ovulations than their daughters (32+/-4 versus 40+/-3, respectively). There was a positive correlation in the response of individual cows to successive superstimulatory treatments (r>0.8; P<0.0001) and the number of detected ovulations from one year to the next (r=0.6; P=0.04). In conclusion, aging was associated with fewer 2-5mm follicles at follicular wave emergence and a lesser follicular and ovulatory response after superstimulatory treatment. The follicular and ovulatory response after superstimulation was repeatable within individuals, regardless of age.  相似文献   

12.
Driancourt MA 《Theriogenology》2001,55(6):1211-1239
In this review, the main features of folliculogenesis are summarized and compared among species. In the past few years, ultrasonography has clarified follicle growth patterns, and our understanding of follicle maturation has improved considerably. As the follicles develop towards the ovulatory stage, three features appear to be highly conserved across all species: 1) the sequence of events (recruitment, selection and dominance); 2) the sequential need for gonadotropins (FSH for recruitment, LH for dominance) and 3) the large variability of numerical parameters (number of waves per cycle, number of follicles per wave) as well as temporal requirements (time of selection, duration of dominance). In addition, specific follicles may also have variable gonadotropin requirements (thresholds). When patterns of follicle development at different physiological states are compared across species, follicular waves were detected in cattle, sheep and horses and during the prepubertal period in swine, suggesting that ovaries of all species operate on a wave basis unless they are prevented from doing so. Efficient estrus control treatments should have the ability to affect 1) the wave pattern by preventing the development of persistent dominant follicles containing aging oocytes, and 2) the recruitment of the future ovulatory follicle whatever the stage of the wave at the time of treatment. This would allow synchronous ovulation of a growing dominant follicle. Manipulation of the luteal phase follicular waves after mating or AI may also optimize fertility. Superovulation is still an efficient technique to obtain progeny from genetically valuable females. Administration of exogenous gonadotropins acts to reveal the underlying ovarian variability. Ovarian response of each female depends on the number of gonado-sensitive follicles present at the time when treatment is initiated. Identification of the number of such follicles for each female would improve efficacy of superovulation, by allocating potential nonresponders to other techniques (OPU/FIV). One of the main components of the within female response to superovulation is the stage of the wave when gonadotropins are injected. Treatment in the absence of a dominant follicle ensures a response close to the female's specific maximum. The development of practical approaches to achieve this still requires further research.  相似文献   

13.
The prenatal exposure of mice to diethylstilbestrol (DES, 10 micrograms/kg on day 15 of gestation) caused both quantitative and structural alterations in ovarian follicles within the neonatal ovary. At birth, control ovaries consisted of small type 1 and 2 ovarian follicles located in the ovarian cortex. By postnatal day 7, ovarian follicle development had advanced to the type 4 stage with larger follicles located within the ovarian medulla. In DES-exposed animals, ovarian follicle maturation was advanced with type 3b and 4 follicles appearing 24 h prior to their appearance in control animals. Also, type 5 ovarian follicles were present on postnatal day 6 in experimental animals but were never seen in control animals. In addition to an alteration in ovarian follicle dynamics, the diameter of individual ovarian follicles was transit time between the various stages of follicular development which results in a greater number of developmentally advanced ovarian follicles being present during neonatal ovarian development. The mechanism by which prenatal exposure to DES alters ovarian follicle dynamics during neonatal development is not known.  相似文献   

14.
The purpose of this study was to determine if the ovaries and uterus of rhesus monkeys could be visualized by ultrasonography and to detect changes associated with follicular growth and ovulation. Animals were examined during 15 menstrual cycles, for an average of nine consecutive days. Ultrasonic recordings were correlated with hormonal parameters (estradiol 17beta, E(2); luteinizing hormone, LH; and progesterone, P) and laparoscopic findings. The uterus and both ovaries were observed in more than 90% of the examinations. A dominant follicle (DF) was identified during all ovulatory cycles, on average 1 d preceding the E(2) peak. The maximal diameter of the DF ranged from 3 to 7 mm. Laparoscopic examinations to determine the site of the DF confirmed ultrasonic findings in 10 of 14 cycles (P < 0.1). There was no significant difference in the size of the dominant and contralateral ovaries; however, more follicles with a diameter of 2 to 7 mm were found on the dominant ovary (P < 0.05). Two animals stimulated with exogenous gonadotropins showed a linear increase in ovarian size for 6 d prior to oocyte recovery (P < 0.05), reflecting an increase in the number of developing follicles. Ultrasonography can be used to identify the DF during spontaneous cycles in rhesus monkeys and to monitor the response of monkeys to exogenous gonadotropins.  相似文献   

15.
The pattern of turnover of dominant follicles involves the sequential growth and regression of two to three dominant follicles during the estrous cycle. The dominant follicle that ovulates is the one that develops concomitantly with the regression of the corpus luteum. The aim of this paper was to determine if the first dominant follicle would ovulate following induction of luteolysis with prostaglandin F2 alpha analogues (PGF) on Day 7 of the cycle. Heifers (n = 43) were checked for estrus (Day 0); their ovaries were scanned daily from Day 6 of the cycle for one week, and the fate of the first dominant follicle was determined. Luteolysis was induced on Day 7 with PGF analogues, and blood samples were taken daily for progesterone and estradiol measurement and at 3-h intervals for 33 h for luteinizing hormone (LH) measurement. Of the 43 heifers given PGF, complete luteolysis occurred in 40 animals. Of these, the first dominant follicle ovulated in 37 heifers; the dominant follicle was not the ovulatory follicle in 2 heifers and the dominant follicle became cystic in one heifer.  相似文献   

16.
Significant uterine growth occurred in normal and hypogonadal (hpg) mice between Days 7 and 21 but thereafter no further growth was observed in hpg mice. The ovaries of hpg mice were significantly smaller than those of normals at all ages, but there was no significant difference between the number of non-growing follicles in the ovaries of mutants and their normal littermates at any age studied, and normal and hpg mice showed a marked reduction in the number of non-growing follicles during the first month of life. The size and composition of the growing follicle population in hpg mice, however, differed markedly from those in normal animals and by 21 days of age the number of growing follicles in mutants was significantly reduced. There was no significant difference in the number of Type 3b follicles before 60 days of age, but the number of all other follicle types was significantly less in hpg mice at all ages studied. Follicles in which the antrum is fully developed (Type 7 and 8) were never seen in the ovaries of mutants and corpora lutea were never observed. Interstitial tissue development was also very poor in hpg ovaries. The hypothalamic GnRH content in normal mice remained low until Day 20, before rising sharply to adult levels (approximately 800 pg) between Days 20 and 30. The pituitary FSH content increased over the first 10 days of life to reach a peak of about 5000 ng, before declining to the adult value of about 2000 ng by Day 30, whilst the plasma FSH concentration was high in the first 10 days, but fell to adult levels over the next 20 days. Pituitary LH content increased significantly between Days 5 and 10 to reach the adult level of about 600 ng. Hypothalamic GnRH was undetectable at all ages in hypogonadal mice, but the pituitary content of FSH and LH had risen to the attenuated mutant adult value by Day 15, and unlike normals, plasma FSH concentrations were not elevated during the neonatal period. These results suggest that minimal gonadotrophic stimulation of the ovary from birth has no effect on the total number of follicles but reduces the number of growing follicles and prevents follicle growth beyond the early antral stage. Gonadotrophins therefore appear to have a role in the initiation and continuance of follicle growth in the adult mouse.  相似文献   

17.
Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.  相似文献   

18.
Using a variation on a standard follicle classification technique, 5 classes of follicles were quantified in serial sections of ovaries from intact mice and mice thymectomized on Day 3 at 5-day intervals from 5 to 40 days of age. Sera from these animals and from animals 60 days of age were analysed for the presence of anti-oocyte antibodies. Ovaries from intact animals 10 to 40 days of age were examined for the presence of antigen(s) using anti-oocyte antibody-positive sera from all ages of mice. There was a dramatic decrease in the primordial follicle population at 10 days of age in thymectomized mice and that population remained significantly lower until 40 days of age. The growing follicle population was also significantly lower at 20 days of age in thymectomized mice and remained lower through 40 days of age. Anti-oocyte antibodies were not detectable until 30 days of age and at that age reacted with oocytes from all follicle types including primordial. Ovarian antigens were present in similar patterns in ovaries from mice at all ages tested. We conclude that thymectomy has an earlier influence on the ovary than previously thought and this influence does not appear to involve the immune activity associated with autoimmune ovarian dysgenesis. This suggests that the effect of thymectomy on the ovary may be biphasic: (1) an early effect, possibly involving a disruption in the hypothalamic-pituitary-ovarian-thymic axis, that influences the primordial and growing follicle populations before 20 days of age; and (2) a later effect involving an immune imbalance first evident by 25-30 days of age that ultimately results in the destruction of the ovary.  相似文献   

19.
Camels are said to be seasonal breeders, but the extent to which season interferes with food supply to affect ovarian function is not fully documented. Hence, the three aims of this study were: (1) to define the breeding season of camels maintained in semi-arid conditions in southern Morocco; (2) to relate the proportion of females with active ovaries (i.e., with follicles > 5 mm), with ovulatory (11-17 mm) or cystic (> 18 mm) follicles to age and body conditions score; (3) to study the consequences of the interactions between age and body conditions score on the proportion of females ovulating and conceiving; and (4) to compare follicular maturation, using in vitro steroidogenesis by intact follicles as a marker during the transition into the breeding season (October) and peak breeding season (March). There was a clear breeding season in the two flocks studied, since over 80-90% of the matings occurred during the period from mid-November to mid-April. Collection of ovaries at slaughter (n = 238) demonstrated a significant seasonal effect on the proportion of females with active ovaries (increasing from 73.5% in October-December to 89% in January-May), but no changes in the proportion of females with ovulatory follicles. Lean females (BCS < 2.5) had a delayed initiation of ovarian function in October-December. In addition, the proportion of females with cystic follicles was also affected by season (peaking during April-May). Neither age nor body condition modulated the frequency of cysts. Finally, the proportion of females conceiving increased steadily as season progressed (peaking at 57% in April-May). Body condition score did not affect this proportion, but young females (< or = 5 years old) had a low ability to conceive. Morphological features of large follicles were unaffected by season. Ovulatory follicles contained around 10(7) granulosa and theca cells. In vitro testosterone output by intact follicles was unrelated to follicle size and season. In vitro oestradiol output increased with increasing follicle size and was larger in follicles obtained during peak breeding season than at its initiation. This may indicate that early breeding season follicles display a low aromatase activity in their granulosa cells. Whether the low oestradiol output of early breeding season follicles is resulting in the low fertility observed at this period remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号