首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The need to decrease the time scale for clinical compound discovery has led to innovations at several stages in the process, including genomics/proteomics for target identification, ultrahigh-throughput screening for lead identification, and structure-based drug design and combinatorial chemistry for lead optimization. A critical juncture in the process is the identification of a proper lead compound, because a poor choice may generate costly difficulties at later stages. Lead compounds are commonly identified from high-throughput screens of large compound libraries, derived from known substrates/inhibitors, or identified in computational prescreeusing X-ray crystal structures. Structural information is often consulted to efficiently optimize leads, but under the current paradigm, such data require preidentification and confirmation of compound binding. Here, we describe a new X-ray crystallography-driven screening technique that combines the steps of lead identification, structural assessment, and optimization. The method is rapid, efficient, and high-throughput, and it results in detailed crystallographic structure information. The utility of the method is demonstrated in the discovery and optimization of a new orally available class of urokinase inhibitors for the treatment of cancer.  相似文献   

3.
Biophysical label-free assays such as those based on SPR are essential tools in generating high-quality data on affinity, kinetic, mechanistic and thermodynamic aspects of interactions between target proteins and potential drug candidates. Here we show examples of the integration of SPR with bioinformatic approaches and mutation studies in the early drug discovery process. We call this combination 'structure-based biophysical analysis'. Binding sites are identified on target proteins using information that is either extracted from three-dimensional structural analysis (X-ray crystallography or NMR), or derived from a pharmacore model based on known binders. The binding site information is used for in silico screening of a large substance library (e.g. available chemical directory), providing virtual hits. The three-dimensional structure is also used for the design of mutants where the binding site has been impaired. The wild-type target and the impaired mutant are then immobilized on different spots of the sensor chip and the interactions of compounds with the wild-type and mutant are compared in order to identify selective binders for the binding site of the target protein. This method can be used as a cost-effective alternative to high-throughput screening methods in cases when detailed binding site information is available. Here, we present three examples of how this technique can be applied to provide invaluable data during different phases of the drug discovery process.  相似文献   

4.
The development of advanced functional genomic tools has paved the way for systematic investigations of biological processes in health and disease. In particular, the implementation of RNA interference (RNAi) as a genome-wide, loss-of-function screening tool has enabled scientists to probe the role for every gene in cellular assays and many new factors for various processes have been discovered employing RNAi screens in recent years. However, the results also demonstrate the complexity of biological systems and indicate that we are still a long way from understanding functional networks in depth. Nevertheless, RNAi screens present a powerful method to interrogate gene function in high-throughput and different methods to elicit RNAi in mammalian cells have been developed. Here, we describe steps that should be considered when planning an RNAi screen employing endoribonuclease prepared (e)siRNAs. We provide useful information on how to implement the screen and analyze the results. Furthermore, we discuss strategies for hit validation and present an outline on how to follow-up on verified hits to gain a molecular understanding of the underlying phenotypes.  相似文献   

5.
Overexpressed proteins are often insoluble, and can be recalcitrant to conventional solubilization techniques such as refolding. Directed evolution methods, in which protein diversity libraries are screened for soluble variants, offer an alternative route to obtaining soluble proteins. Recently, several new protein solubility screens have been developed that do not require structural or functional information about the target protein. Soluble protein can be detected in vivo and in vitro by fusion reporter tags. Protein misfolding can be measured in vivo using the bacterial response to protein misfolding. Finally, soluble protein can be monitored by immunological detection. Efficient, well-established strategies for generating and recombining genetic diversity, driven by new screening and selection methods, can furnish correctly folded, soluble protein.  相似文献   

6.
7.
Protein crystallization is a major bottleneck in protein X-ray crystallography, the workhorse of most structural proteomics projects. Because the principles that govern protein crystallization are too poorly understood to allow them to be used in a strongly predictive sense, the most common crystallization strategy entails screening a wide variety of solution conditions to identify the small subset that will support crystal nucleation and growth. We tested the hypothesis that more efficient crystallization strategies could be formulated by extracting useful patterns and correlations from the large data sets of crystallization trials created in structural proteomics projects. A database of crystallization conditions was constructed for 755 different proteins purified and crystallized under uniform conditions. Forty-five percent of the proteins formed crystals. Data mining identified the conditions that crystallize the most proteins, revealed that many conditions are highly correlated in their behavior, and showed that the crystallization success rate is markedly dependent on the organism from which proteins derive. Of the proteins that crystallized in a 48-condition experiment, 60% could be crystallized in as few as 6 conditions and 94% in 24 conditions. Consideration of the full range of information coming from crystal screening trials allows one to design screens that are maximally productive while consuming minimal resources, and also suggests further useful conditions for extending existing screens.  相似文献   

8.
荧光膜片钳(patch-clamp fluorometry,PCF)是将离子通道蛋白局部的构象变化和门控紧密结合,实时记录同一膜片上离子通道的荧光和电流信号的创新型生物物理学技术,其特点是将经典的膜片钳和现代光学记录结合起来,实时同步完美呈现离子通道执行其功能时的蛋白质构象信息.与研究结构的X射线和冰冻电镜不同,荧光膜片钳提供离子通道处于真实细胞膜生理环境并执行功能的实时动态结构信息.随着新的光学技术、显微成像技术、图像分析技术等的进步,大大地扩展了荧光膜片钳技术的记录范围、分辨精度及敏感度,使研究者以前所未有的时空分辨率来实时观察和记录离子通道蛋白的结构变化.  相似文献   

9.
We have developed a screening method that has the potential to streamline the high-throughput analysis of affinity reagents for proteomic projects. By using multiplexed flow cytometry, we can simultaneously determine the relative expression levels, the identification of nonspecific binding, and the discrimination of fine specificities to generate a complete functional profile for each clone. The quality and quantity of data, combined with significant reductions in analysis time and antigen consumption, provide notable advantages over standard ELISA methods and yield much information in the primary screen which is usually only obtained in later screens. By combining high-throughput screening capabilities with multiplex technology, we have redefined the parameters for the initial identification of affinity reagents recovered from combinatorial libraries and removed a significant bottleneck in the generation of affinity reagents on a proteomic scale.  相似文献   

10.
《Inorganica chimica acta》1988,153(2):105-113
The temperature dependency of ligand binding processes lend support to the proposed mechanisms and the factors affecting ligand binding reported earlier in this series. The free energy contribution from each factor affecting ligand binding was estimated for a number of haem proteins. The structures of the haem proteins used, as conveyed from ligand binding data, are in agreement with the structures of these haem proteins as determined by other methods (e.g. X-ray crystallography, NMR, etc.). Therefore, ligand binding could be used as a facile probe to investigate some of the structural and functional properties of haem proteins. In this respect, it was concluded that the structure of native cytochrome c at pH 10 is similar to the structure of carboxymethyl-Met 80 cytochrome c between pH 7 and 10.  相似文献   

11.
The structural genomics projects have been accumulating an increasing number of protein structures, many of which remain functionally unknown. In parallel effort to experimental methods, computational methods are expected to make a significant contribution for functional elucidation of such proteins. However, conventional computational methods that transfer functions from homologous proteins do not help much for these uncharacterized protein structures because they do not have apparent structural or sequence similarity with the known proteins. Here, we briefly review two avenues of computational function prediction methods, i.e. structure-based methods and sequence-based methods. The focus is on our recent developments of local structure-based and sequence-based methods, which can effectively extract function information from distantly related proteins. Two structure-based methods, Pocket-Surfer and Patch-Surfer, identify similar known ligand binding sites for pocket regions in a query protein without using global protein fold similarity information. Two sequence-based methods, protein function prediction and extended similarity group, make use of weakly similar sequences that are conventionally discarded in homology based function annotation. Combined together with experimental methods we hope that computational methods will make leading contribution in functional elucidation of the protein structures.  相似文献   

12.
Cell-based high-content screening of small-molecule libraries   总被引:1,自引:0,他引:1  
Advanced microscopy and the corresponding image analysis have been developed in recent years into a powerful tool for studying molecular and morphological events in cells and tissues. Cell-based high-content screening (HCS) is an upcoming methodology for the investigation of cellular processes and their alteration by multiple chemical or genetic perturbations. Multiparametric characterization of responses to such changes can be analyzed using intact live cells as reporter. These disturbances are screened for effects on a variety of molecular and cellular targets, including subcellular localization and redistribution of proteins. In contrast to biochemical screening, they detect the responses within the context of the intercellular structural and functional networks of normal and diseased cells, respectively. As cell-based HCS of small-molecule libraries is applied to identify and characterize new therapeutic lead compounds, large pharmaceutical companies are major drivers of the technology and have already shown image-based screens using more than 100,000 compounds.  相似文献   

13.
MOTIVATION: Identification of functional information for a protein from its three-dimensional (3D) structure is a major challenge in genomics. The power of theoretical microscopic titration curves (THEMATICS), when coupled with a statistical analysis, provides a method for high-throughput screening for identification of catalytic sites and binding sites with high accuracy and precision. The method requires only the 3D structure of the query protein as input, but it performs as well as other methods that depend on sequence alignments and structural similarities.  相似文献   

14.
Lignin comprises 15–25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP‐binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p‐coumarate, 3‐phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X‐ray crystal structures of protein–ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin‐derived aromatic compounds. The screens and structural data provide new functional assignments for these solute‐binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence‐based functional annotation methods for this family of proteins.Proteins 2013; 81:1709–1726. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
The discovery that RNA interference (RNAi) is functional in mammalian cells led us to form The RNAi Consortium (TRC) with the goal of enabling large-scale loss-of-function screens through the development of genome-scale RNAi libraries and methodologies for their use. These resources form the basis of a loss-of-function screening platform created at the Broad Institute. Our human and mouse libraries currently contain >135,000 lentiviral clones targeting 27,000 genes. Initial screening efforts have demonstrated that these libraries and methods are practical and powerful tools for high-throughput lentivirus RNAi screens.  相似文献   

17.
Fragment-based screening using X-ray crystallography and NMR spectroscopy   总被引:1,自引:0,他引:1  
Approaches which start from a study of the interaction of very simple molecules (fragments) with the protein target are proving to be valuable additions to drug design. Fragment-based screening allows the complementarity between a protein active site and drug-like molecules to be rapidly and effectively explored, using structural methods. Recent improvements in the intensities of laboratory X-ray sources permits the collection of greater amounts of high-quality diffraction data and have been matched by developments in automation, crystallisation and data analysis. Developments in NMR screening, including the use of cryogenically cooled NMR probes and (19)F-containing reporter molecules have expanded the scope of this technique, while increasing the availability of binding site and quantitative affinity data for the fragments. Application of these methods has led to a greater knowledge of the chemical variety, structural features and energetics of protein-fragment interactions. While fragment-based screening has already been shown to reduce the timescales of the drug discovery process, a more detailed characterisation of fragment screening hits can reveal unexpected similarities between fragment chemotypes and protein active sites leading to improved understanding of the pharmacophores and the re-use of this information against other protein targets.  相似文献   

18.
We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them.  相似文献   

19.

Background

Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding.

Results

In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces.

Conclusions

NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.  相似文献   

20.
The aim of this study was to investigate dual energy (DE) systems using X-ray films and intensifying screens as detecting media. This has been studied using both experimental methods and numerical modelling. Numerical methods were used to calculate energy losses due to K-fluourescent escape originating from the phosphors of the intensifying screens. This enabled the calculation of absorbed energy in screens. The method for screen selection and prediction of performance used the fact that detector response depends upon impinging X-ray energy. By equating the detector's absorbing characteristics to the resultant optical density (OD), an absorbed energy constant was calculated. These constants were used to predict OD for a given X-ray spectrum and hence simulation of detector characteristics. Experimental techniques were used to investigate sensitivity to chemical composition changes. These results compared favourably with computed values. It was demonstrated that although limitations exist, detector simulations are valid and X-ray film intensifying screen combinations make adequate DE detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号