首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tarantula’s leg muscle thick filament is the ideal model for the study of the structure and function of skeletal muscle thick filaments. Its analysis has given rise to a series of structural and functional studies, leading, among other things, to the discovery of the myosin interacting-heads motif (IHM). Further electron microscopy (EM) studies have shown the presence of IHM in frozen-hydrated and negatively stained thick filaments of striated, cardiac, and smooth muscle of bilaterians, most showing the IHM parallel to the filament axis. EM studies on negatively stained heavy meromyosin of different species have shown the presence of IHM on sponges, animals that lack muscle, extending the presence of IHM to metazoans. The IHM evolved about 800 MY ago in the ancestor of Metazoa, and independently with functional differences in the lineage leading to the slime mold Dictyostelium discoideum (Mycetozoa). This motif conveys important functional advantages, such as Ca2+ regulation and ATP energy-saving mechanisms. Recent interest has focused on human IHM structure in order to understand the structural basis underlying various conditions and situations of scientific and medical interest: the hypertrophic and dilated cardiomyopathies, overfeeding control, aging and hormone deprival muscle weakness, drug design for schistosomiasis control, and conditioning exercise physiology for the training of power athletes.  相似文献   

2.
Thick filaments from leg muscle of tarantula, maintained under relaxing conditions (Mg-ATP and EGTA), were negatively stained and photographed with minimal electron dose. Particles were selected for three-dimensional image reconstruction by general visual appearance and by the strength and symmetry of their optical diffraction patterns, the best of which extend to spacings of 1/5 nm-1. The helical symmetry is such that, on a given layer-line, Bessel function contributions of different orders start to overlap at fairly low resolution and must therefore be separated computationally by combining data from different views. Independent reconstructions agree well and show more detail than previous reconstructions of thick filaments from Limulus and scallop. The strongest feature is a set of four long-pitch right-handed helical ridges (pitch 4 X 43.5 nm) formed by the elongated myosin heads. The long-pitch helices are modulated to give ridges with an axial spacing of 14.5 nm, lying in planes roughly normal to the filament axis and running circumferentially. We suggest that the latter may be formed by the stacking of a subfragment 1 (S1) head from one myosin molecule on an S1 from an axially neighbouring molecule. Internal features in the map indicate an approximate local twofold axis relating the putative heads within a molecule. The heads appear to point in opposite directions along the filament axis and are located very close to the filament backbone. Thus, for the first time, the two heads of the myosin molecule appear to have been visualized in a native thick filament under relaxing conditions.  相似文献   

3.
To bridge the gap between the contractile system in muscle and in vitro motility assay, we have devised an A-band motility assay system. A glycerinated skeletal myofibril was treated with gelsolin to selectively remove the thin filaments and expose a single A-band. A single bead-tailed actin filament trapped by optical tweezers was made to interact with the inside or the outer surface of the A-band, and the displacement of the bead-tailed filament was measured in a physiological ionic condition by phase-contrast and fluorescence microscopy. We observed large back-and-forth displacement of the filament accompanied by a large change in developed force. Despite this large tension fluctuation, we found that the average force was proportional to the overlap inside and outside the A-band up to approximately 150 nm and 300 nm from the end of the A-band, respectively. Consistent with the difference in the density of myosin molecules, the average force per unit length of the overlap inside the A-band (the time-averaged force/myosin head was approximately 1 pN) was approximately twice as large as that outside. Thus, we conclude that the A-band motility assay system described here is suitable for studying force generation on a single actin filament, and its sliding movement within a regular three-dimensional thick filament lattice.  相似文献   

4.
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head.We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing.Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail.  相似文献   

5.
6.
7.
S Malinchik  S Xu    L C Yu 《Biophysical journal》1997,73(5):2304-2312
By using synchrotron radiation and an imaging plate for recording diffraction patterns, we have obtained high-resolution x-ray patterns from relaxed rabbit psoas muscle at temperatures ranging from 1 degree C to 30 degrees C. This allowed us to obtain intensity profiles of the first six myosin layer lines and apply a model-building approach for structural analysis. At temperatures 20 degrees C and higher, the layer lines are sharp with clearly defined maxima. Modeling based on the data obtained at 20 degrees C reveals that the average center of the cross-bridges is at 135 A from the center of the thick filament and both of the myosin heads appear to wrap around the backbone. At 10 degrees C and lower, the layer lines become very weak and diffuse scattering increases considerably. At 4 degrees C, the peak of the first layer line shifts toward the meridian from 0.0047 to 0.0038 A(-1) and decreases in intensity approximately by a factor of four compared to that at 20 degrees C, although the intensities of higher-order layer lines remain approximately 10-15% of the first layer line. Our modeling suggests that as the temperature is lowered from 20 degrees C to 4 degrees C the center of cross-bridges extends radially away from the center of the filament (135 A to 175 A). Furthermore, the fraction of helically ordered cross-bridges decreases at least by a factor of two, while the isotropic disorder (the temperature factor) remains approximately unchanged. Our results on the order/disordering effects of temperature are in general agreement with earlier results of Wray [Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62a (Abstr.)] and Lowy et al. (Lowy, J., D. Popp, and A. A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812-824). and support Poulsen and Lowy's hypothesis of coexistence of ordered and disordered cross-bridge populations in muscle (Poulsen, F. R., and J. Lowy. 1983. Small angle scattering from myosin heads in relaxed and rigor frog skeletal muscle. Nature (Lond.). 303:146-152.). However, our results added new insights into the disordered population. Present modeling together with data analysis (Xu, S., S. Malinchik, Th. Kraft, B. Brenner, and L. C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:000-000) indicate that in a relaxed muscle, cross-bridges are distributed in three populations: those that are ordered on the thick filament helix and those that are disordered; and within the disordered population, some cross-bridges are detached and some are weakly attached to actin. One critical conclusion of the present study is that the apparent order <--> disorder transition as a function of temperature is not due to an increase/decrease in thermal motion (temperature factor) for the entire population, but a redistribution of cross-bridges among the three populations. Changing the temperature leads to a change in the fraction of cross-bridges located on the helix, while changing the ionic strength at a given temperature affects the disordered population leading to a change in the relative fraction of cross-bridges detached from and weakly attached to actin. Since the redistribution is reversible, we suggest that there is an equilibrium among the three populations of cross-bridges.  相似文献   

8.
Human apolipoprotein E (apoE) is a member of the family of soluble apolipoproteins. Through its interaction with members of the low-density lipoprotein receptor family, apoE has a key role in lipid transport both in the plasma and in the central nervous system. Its three common structural isoforms differentially affect the risk of developing atherosclerosis and neurodegenerative disorders, including Alzheimer's disease. Because the function of apoE is dictated by its structure, understanding the structural properties of apoE and its isoforms is required both to determine its role in disease and for the development of therapeutic strategies.  相似文献   

9.
10.
Cholesteryl ester transfer protein (CETP) is important clinically and is the current target for new drug development. Its structure and mechanism of action has not been well understood. We have combined current new structural and functional methods to compare with relevant prior data. These analyses have led us to propose several steps in CETP's function at the molecular level, in the context of its interactions with lipoproteins, e.g., sensing, penetration, docking, selectivity, ternary complex formation, lipid transfer, and HDL dissociation. These new molecular insights improve our understanding of CETP's mechanisms of action.  相似文献   

11.
12.
The alternatively spliced SM1 and SM2 smooth muscle myosin heavy chains differ at their respective carboxyl termini by 43 versus 9 unique amino acids. To determine whether these tailpieces affect filament assembly, SM1 and SM2 myosins, the rod region of these myosin isoforms, and a rod with no tailpiece (tailless), were expressed in Sf 9 cells. Paracrystals formed from SM1 and SM2 rod fragments showed different modes of molecular packing, indicating that the tailpieces can influence filament structure. The SM2 rod was less able to assemble into stable filaments than either SM1 or the tailless rods. Expressed full-length SM1 and SM2 myosins showed solubility differences comparable to the rods, establishing the validity of the latter as a model for filament assembly. Formation of homodimers of SM1 and SM2 rods was favored over the heterodimer in cells coinfected with both viruses, compared with mixtures of the two heavy chains renatured in vitro. These results demonstrate for the first time that the smooth muscle myosin tailpieces differentially affect filament assembly, and suggest that homogeneous thick filaments containing SM1 or SM2 myosin could serve distinct functions within smooth muscle cells.  相似文献   

13.
Clostridium difficile causes pseudomembranous colitis and is responsible for many cases of nosocomial antibiotic-associated diarrhea. Major virulence factors of C. difficile are the glucosylating exotoxins A and B. Both toxins enter target cells in a pH- dependent manner from endosomes by forming pores. They translocate the N-terminal catalytic domains into the cytosol of host cells and inactivate Rho guanosine triphosphatases by glucosylation. The crystal structure of the catalytic domain of toxin B was solved in a complex with uridine diphosphate, glucose, and manganese ion, exhibiting a folding of type A family glycosyltransferases. Crystallization of fragments of the C-terminus of toxin A, which is characterized by polypeptide repeats, revealed a solenoid-like structure often found in bacterial cell surface proteins. These studies, which provide new insights into structure, uptake, and function of the family of clostridial glucosylating toxins, are reviewed.  相似文献   

14.
The proximal accessory flexor (PAF) of the myochordotonal organ (MCO) in the meropodite of crayfish walking legs contains two populations of muscle fibers which are distinguishable by their diameters. The large accessory (LA) fibers are 40-80 micrometer in diam and are similar in ultrastructure to other slow crustacean fibers. The small accessory (SA) fibers are 1-12 micrometer in diam and have a unique myofilament distribution at normal body lengths. There is extensive double overlap of thin filaments at these lengths, and some of them form bundles that may extend the length of the sarcomere. In the middle of the sarcomeres, thick and thin filaments are totally segregated from each other. When the fibers are stretched to lengths beyond double overlap length, the myofilament patterns are conventional. The segregated pattern is reestablished when stretched fibers are allowed to shorten passively. The length-tension relationship of the SA fibers is described by a linear ascending branch, a plateau, and a linear descending branch. The ascending branch encompasses normal body lengths from slack length (Ls) with maximum double overlap to the length at which double overlap ceases (1.8 X Ls). The descending phase is comparable to that of other skeletal muscles. That is, tension decreases in proportion with the reduction in thick-thin filament interdigitation (2 X Ls to 3 X Ls).  相似文献   

15.
16.
17.
The strongest myosin-related features in the low-angle axial x-ray diffraction pattern of resting frog sartorius muscle are the meridional reflections corresponding to axial spacings of 21.4 and 14.3 nm, and the first layer line, at a spacing 42.9 nm. During tetanus the intensities of the first layer line and the 21.4-nm meridional decrease by 62 and 80% respectively, but, when the muscle is fresh, the 14.3-nm meridional intensity rises by 13%, although it shows a decrease when the muscle is fatigued. The large change in the intensity of the 21.4-nm meridional reflection suggests that the projected myosin cross-bridge density onto the thick filament axis changes during contraction. The model proposed by Bennett (Ph.D. Thesis, University of London, 1977) in which successive cross-bridge levels are at 0,3/8, and 5/8 of the 42.9-nm axial repeat in the resting muscle, passing to 0, 1/3, and 2/3 in the contracting state, can explain why the 21.4-nm reflection decreases in intensity while the 14.3-nm increases when the muscle is activated. The model predicts a rather larger increase of the 14.3-nm reflection intensity during contraction than that observed, but the discrepancy may be removed if a small change of shape or tilt of the cross-bridges relative to the thick filament axis is introduced. The decrease of the intensity of the first layer line indicates that the cross-bridges become disordered in the plane perpendicular to the filament axis.  相似文献   

18.
The three-dimensional arrangement of the myosin filaments in the A-band of frog sartorius muscle was studied using electron micrographs of very thin and accurately cut transverse sections through the bare region (on each side of the M-band) where the thick filament shafts are roughly triangular in shape. It was found that the orientations of these triangular profiles are arranged to give a superlattice of the same size and shape as that proposed by Huxley & Brown (1967) on the basis of X-ray diffraction evidence, but the contents of the superlattice may not be as they suggested. The results from detailed image analysis strongly suggest that myosin filaments (which have been shown to have 3-fold rotational symmetry, Luther, 1978; Luther, Munro and Squire, unpublished results) are arranged with one of two orientations which are 60 ° (or 180 °) apart. This arrangement of filaments with 3-fold symmetry is not that predicted for a superlattice with the symmetry suggested by Huxley & Brown.Two rules define the way in which the orientations of neighbouring filaments are defined. Rule (1): no three mutually adjacent filaments in the hexagonal array of filaments in the A-band can all have identical orientations; and rule (2): no three successive filaments along a 101? row in the filament array can have identical orientations. These two no-three-alike rules are sufficient to describe the observed arrangement of filament profiles in the frog bare region (except for some minor violations discussed in the text), and they lead automatically to the generation of the required superlattice. The A-band structure in fish muscle is different; there is no superlattice and the triangular bare region profiles have only one orientation. The frog superlattice and fish simple lattice are explained directly in terms of different interactions between the M-bridges in the M-bands of these muscles. The observed structures require that the myosin filament symmetry at the centre of the M-band is that of the dihedral point group 32. The two possible forms of interaction between filaments with this symmetry (apart from a completely random structure) give rise to the observed A-band lattices in frog and fish muscles. The 3-fold rotational symmetry of the myosin filaments required to explain the observed micrographs also requires that the myosin crossbridge arrangements around the actin filaments in frog and fish muscles will be different. It is suggested that the structure in the frog A-band (and in the A-bands of other higher vertebrates) has evolved from that in fish to improve the distribution of crossbridges around the aotin filaments. The X-ray diffraction evidence of Huxley & Brown (1967) will be accounted for in terms of the proposed A-band structure in a further paper in this series.  相似文献   

19.
The thick-filament-monomeric-myosin equilibrium was prepared from pure myosin at pH 8.1. The application of hydrostatic pressure to the self-assembly equilibrium resulted in a biphasic dissociation curve in which a linear decrease in turbidity (a measure of weight added to or lost from the filament) was followed by a transition to a second pressure-insensitive phase. The first phase represents the effect of hydrostatic pressure on the growth or propagation phase of filament assembly. Here is was shown that hydrostatic pressure served to shorten the filaments in concert towards the bare zone whilst maintaining the narrow length distribution seen at atmospheric pressure; the filament concentration remained constant during the experiment. A more precise definition of the delta-v for the assembly of monomer into filament was obtained than had hitherto been possible. The positioning of the bare zone at the centre of the filament seems to be one of the more obvious functions of the length-regulation mechanism. It also appears that all the basic structural elements of the native thick filament are potentially present in the pH 8.1 homopolymer; its length can be increased by physiological concentrations of MgCl2 and decreased by pressure. The monodisperse native filament could then be formed by a fine tuning of the basic length-regulation mechanism of the homopolymer by the co-polymerization of the other thick-filament proteins.  相似文献   

20.
Adenosylcobalamin-dependent isomerases catalyze a variety of chemically difficult 1,2-rearrangements that proceed through a mechanism involving free radical intermediates. These radicals are initially generated by homolysis of the cobalt-carbon bond of the coenzyme. Recently, the crystal structures of several of these enzymes have been solved, revealing two modes of coenzyme binding and highlighting the role of the protein in controlling the rearrangement of reactive substrate radical intermediates. Complementary data from kinetic, spectroscopic and theoretical studies have produced insights into the mechanism by which substrate radicals are generated at the active site, and the pathways by which they rearrange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号