首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Essential genomic transactions such as DNA‐damage repair and DNA replication take place on single‐stranded DNA (ssDNA) or require specific single‐stranded/double‐stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single‐molecule studies of DNA–protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single‐molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force‐induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force‐induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA. © 2013 Wiley Periodicals, Inc. Biopolymers 99:611–620, 2013.  相似文献   

7.
Understanding and predicting the mechanical properties of protein/DNA complexes are challenging problems in biophysics. Certain architectural proteins bind DNA without sequence specificity and strongly distort the double helix. These proteins rapidly bind and unbind, seemingly enhancing the flexibility of DNA as measured by cyclization kinetics. The ability of architectural proteins to overcome DNA stiffness has important biological consequences, but the detailed mechanism of apparent DNA flexibility enhancement by these proteins has not been clear. Here, we apply a novel Monte Carlo approach that incorporates the precise effects of protein on DNA structure to interpret new experimental data for the bacterial histone-like HU protein and two eukaryotic high-mobility group class B (HMGB) proteins binding to ∼ 200-bp DNA molecules. These data (experimental measurement of protein-induced increase in DNA cyclization) are compared with simulated cyclization propensities to deduce the global structure and binding characteristics of the closed protein/DNA assemblies. The simulations account for all observed (chain length and concentration dependent) effects of protein on DNA behavior, including how the experimental cyclization maxima, observed at DNA lengths that are not an integral helical repeat, reflect the deformation of DNA by the architectural proteins and how random DNA binding by different proteins enhances DNA cyclization to different levels. This combination of experiment and simulation provides a powerful new approach to resolve a long-standing problem in the biophysics of protein/DNA interactions.  相似文献   

8.
High mobility group B (HMGB) proteins contain two HMG box domains known to bind without sequence specificity into the DNA minor groove, slightly intercalating between basepairs and producing a strong bend in the DNA backbone. We use optical tweezers to measure the forces required to stretch single DNA molecules. Parameters describing DNA flexibility, including contour length and persistence length, are revealed. In the presence of nanomolar concentrations of isolated HMG box A from HMGB2, DNA shows a decrease in its persistence length, where the protein induces an average DNA bend angle of 114 +/- 21 degrees for 50 mM Na+, and 87 +/- 9 degrees for 100 mM Na+. The DNA contour length increases from 0.341 +/- 0.003 to 0.397 +/- 0.012 nm per basepair, independent of salt concentration. In 50 mM Na+, the protein does not unbind even at high DNA extension, whereas in 100 mM Na+, the protein appears to unbind only below concentrations of 2 nM. These observations support a flexible hinge model for noncooperative HMG binding at low protein concentrations. However, at higher protein concentrations, a cooperative filament mode is observed instead of the hinge binding. This mode may be uniquely characterized by this high-force optical tweezers experiment.  相似文献   

9.
HMO1 proteins are abundant Saccharomyces cerevisiae (yeast) High Mobility Group Box (HMGB) protein (Kamau, Bauerla & Grove, 2004). HMGB proteins are nuclear proteins which are known to be architectural proteins (Travers, 2003). HMO1 possesses two HMGB box domains. It has been reported that double box HMGB proteins induce strong bends upon binding to DNA. It is also believed that they play an essential role in reorganizing chromatin and, therefore, are likely to be involved in gene activation. To characterize DNA binding we combine single molecule stretching experiments and AFM imaging of HMO1 proteins bound to DNA. By stretching DNA bound to HMO1, we determine the dissociation constant, measure protein induced average DNA bending angles, and determine the rate at which torsional constraint of the DNA is released by the protein. To further investigate the local nature of the binding, AFM images of HMO1-DNA complexes are imaged, and we probe the behavior of these complexes as a function of protein concentration. The results show that at lower concentrations, HMO1 preferentially binds to the ends of the double helix and links to the separate DNA strands. At higher concentrations HMO1 induces formation of a complex network that reorganizes DNA. Although HMG nuclear proteins are under intense investigation, little is known about HMO1. Our studies suggest that HMO1 proteins may facilitate interactions between multiple DNA molecules.  相似文献   

10.
11.
12.
13.
14.
Maize HMGB1 is a typical member of the family of plant chromosomal HMGB proteins, which have a central high-mobility group (HMG)-box DNA-binding domain that is flanked by a basic N-terminal region and a highly acidic C-terminal domain. The basic N-terminal domain positively influences various DNA interactions of the protein, while the acidic C-terminal domain has the opposite effect. Using DNA-cellulose binding and electrophoretic mobility shift assays, we demonstrate that the N-terminal basic domain binds DNA by itself, consistent with its positive effects on the DNA interactions of HMGB1. To examine whether the negative effect of the acidic C-terminal domain is brought about by interactions with the basic part of HMGB1 (N-terminal region, HMG-box domain), intramolecular cross-linking in combination with formic acid cleavage of the protein was used. These experiments revealed that the acidic C-terminal domain interacts with the basic N-terminal domain. The intramolecular interaction between the two oppositely charged termini of the protein is enhanced when serine residues in the acidic tail of HMGB1 are phosphorylated by protein kinase CK2, which can explain the negative effect of the phosphorylation on certain DNA interactions. In line with that, covalent cross-linking of the two terminal domains resulted in a reduced affinity of HMGB1 for linear DNA. Comparable to the finding with maize HMGB1, the basic N-terminal and the acidic C-terminal domains of the Arabidopsis HMGB1 and HMGB4 proteins interact, indicating that these intramolecular interactions, which can modulate HMGB protein function, generally occur in plant HMGB proteins.  相似文献   

15.
16.
During V(D)J recombination, recombination activating gene (RAG)1 and RAG2 bind and cleave recombination signal sequences (RSSs), aided by the ubiquitous DNA-binding/-bending proteins high-mobility group box protein (HMGB)1 or HMGB2. HMGB1/2 play a critical, although poorly understood, role in vitro in the assembly of functional RAG–RSS complexes, into which HMGB1/2 stably incorporate. The mechanism of HMGB1/2 recruitment is unknown, although an interaction with RAG1 has been suggested. Here, we report data demonstrating only a weak HMGB1–RAG1 interaction in the absence of DNA in several assays, including fluorescence anisotropy experiments using a novel Alexa488-labeled HMGB1 protein. Addition of DNA to RAG1 and HMGB1 in fluorescence anisotropy experiments, however, results in a substantial increase in complex formation, indicating a synergistic binding effect. Pulldown experiments confirmed these results, as HMGB1 was recruited to a RAG1–DNA complex in a RAG1 concentration-dependent manner and, interestingly, without strict RSS sequence specificity. Our finding that HMGB1 binds more tightly to a RAG1–DNA complex over RAG1 or DNA alone provides an explanation for the stable integration of this typically transient architectural protein in the V(D)J recombinase complex throughout recombination. These findings also have implications for the order of events during RAG–DNA complex assembly and for the stabilization of sequence-specific and non-specific RAG1–DNA interactions.  相似文献   

17.
18.
How do site-specific DNA-binding proteins find their targets?   总被引:17,自引:6,他引:11  
Essentially all the biological functions of DNA depend on site-specific DNA-binding proteins finding their targets, and therefore ‘searching’ through megabases of non-target DNA. In this article, we review current understanding of how this sequence searching is done. We review how simple diffusion through solution may be unable to account for the rapid rates of association observed in experiments on some model systems, primarily the Lac repressor. We then present a simplified version of the ‘facilitated diffusion’ model of Berg, Winter and von Hippel, showing how non-specific DNA–protein interactions may account for accelerated targeting, by permitting the protein to sample many binding sites per DNA encounter. We discuss the 1-dimensional ‘sliding’ motion of protein along non-specific DNA, often proposed to be the mechanism of this multiple site sampling, and we discuss the role of short-range diffusive ‘hopping’ motions. We then derive the optimal range of sliding for a few physical situations, including simple models of chromosomes in vivo, showing that a sliding range of ~100 bp before dissociation optimizes targeting in vivo. Going beyond first-order binding kinetics, we discuss how processivity, the interaction of a protein with two or more targets on the same DNA, can reveal the extent of sliding and we review recent experiments studying processivity using the restriction enzyme EcoRV. Finally, we discuss how single molecule techniques might be used to study the dynamics of DNA site-specific targeting of proteins.  相似文献   

19.
20.
HMGB1 (also called HMG-1) is a DNA-bending protein that augments the affinity of diverse regulatory proteins for their DNA sites. Previous studies have argued for a specific interaction between HMGB1 and target proteins, which leads to cooperative binding of the complex to DNA. Here we propose a different model that emerged from studying how HMGB1 stimulates enhanceosome formation by the Epstein-Barr viral activator Rta on a target gene, BHLF-1. HMGB1 stimulates binding of individual Rta dimers to multiple sites in the enhancer. DNase I and hydroxyl radical footprinting, electrophoretic mobility shift assays, and immobilized template assays failed to reveal stable binding of HMGB1 within the complex. Furthermore, mutational analysis failed to identify a specific HMGB1 target sequence. The effect of HMGB1 on Rta could be reproduced by individual HMG domains, yeast HMO1, or bacterial HU. These results, combined with the effects of single-amino-acid substitutions within the DNA-binding surface of HMGB1 domain A, argue for a mechanism whereby DNA-binding and bending by HMGB1 stimulate Rta-DNA complex formation in the absence of direct interaction with Rta or a specific HMGB1 target sequence. The data contrast with our analysis of HMGB1 action on another BHLF-1 regulatory protein called ZEBRA. We discuss the two distinct modes of HMGB1 action on a single regulatory region and propose how HMGB1 can function in diverse contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号