首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation of caldesmon was studied to determine if kinase activity reflected either an endogenous kinase or caldesmon itself. Titration of kinase activity with calmodulin yielded maximum activity at substoichiometric ratios of calmodulin/caldesmon. The sites of phosphorylation on caldesmon for calcium/calmodulin-dependent protein kinase II and endogenous kinase were the same, but distinct from protein kinase C sites. Phosphorylation in the presence of Ca2+ and calmodulin resulted in a subsequent increase of endogenous kinase activity in the absence of Ca2+. These results suggest that caldesmon is not a protein kinase and that kinase activity in caldesmon preparations is due to calcium/calmodulin-dependent protein kinase II.  相似文献   

2.
Vascular smooth muscle caldesmon   总被引:10,自引:0,他引:10  
Caldesmon, a major actin- and calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a tissue homogenate, ion-exchange chromatography, and affinity chromatography on a column of immobilized calmodulin. The isolated protein shared many properties in common with chicken gizzard caldesmon: immunological cross-reactivity, Ca2+-dependent interaction with calmodulin, Ca2+-independent interaction with F-actin, competition between actin and calmodulin for caldesmon binding only in the presence of Ca2+, and inhibition of the actin-activated Mg2+-ATPase activity of smooth muscle myosin without affecting the phosphorylation state of myosin. Maximal binding of aorta caldesmon to actin occurred at 1 mol of caldesmon: 9-10 mol of actin, and binding was unaffected by tropomyosin. Half-maximal inhibition of the actin-activated myosin Mg2+-ATPase occurred at approximately 1 mol of caldesmon: 12 mol of actin. This inhibition was also unaffected by tropomyosin. Caldesmon had no effect on the Mg2+-ATPase activity of smooth muscle myosin in the absence of actin. Bovine aorta and chicken gizzard caldesmons differed in several respects: Mr (149,000 for bovine aorta caldesmon and 141,000 for chicken gizzard caldesmon), extinction coefficient (E1%280nm = 19.5 and 5.0 for bovine aorta and chicken gizzard caldesmon, respectively), amino acid composition, and one-dimensional peptide maps obtained by limited chymotryptic and Staphylococcus aureus V8 protease digestion. In a competitive enzyme-linked immunosorbent assay, using anti-chicken gizzard caldesmon, a 174-fold molar excess of bovine aorta caldesmon relative to chicken gizzard caldesmon was required for half-maximal inhibition. These studies establish the widespread tissue and species distribution of caldesmon and indicate that vascular smooth muscle caldesmon exhibits physicochemical differences yet structural and functional similarities to caldesmon isolated from chicken gizzard.  相似文献   

3.
Autophosphorylation of smooth-muscle caldesmon.   总被引:1,自引:0,他引:1       下载免费PDF全文
Caldesmon, a major actin- and calmodulin-binding protein of smooth muscle, has been implicated in regulation of the contractile state of smooth muscle. The isolated protein can be phosphorylated by a co-purifying Ca2+/calmodulin-dependent protein kinase, and phosphorylation blocks inhibition of the actomyosin ATPase by caldesmon [Ngai & Walsh (1987) Biochem. J. 244, 417-425]. We have examined the phosphorylation of caldesmon in more detail. Several lines of evidence indicate that caldesmon itself is a kinase and the reaction is an intermolecular autophosphorylation: (1) caldesmon (141 kDa) and a 93 kDa proteolytic fragment of caldesmon can be separated by ion-exchange chromatography: both retain caldesmon kinase activity, which is Ca2+/calmodulin-dependent; (2) chymotryptic digestion of caldesmon generates a Ca2+/calmodulin-independent form of caldesmon kinase; (3) caldesmon purified to electrophoretic homogeneity retains caldesmon kinase activity, and elution of enzymic activity from a fast-performance-liquid-chromatography ion-exchange column correlates with caldesmon of Mr 141,000; (4) caldesmon is photoaffinity-labelled with 8-azido-[alpha-32P]ATP; labelling is inhibited by ATP, GTP and CTP, indicating a lack of nucleotide specificity; (5) caldesmon binds tightly to Affi-Gel Blue resin, which recognizes proteins having a dinucleotide fold. Autophosphorylation of caldesmon occurs predominantly on serine residues (83.3%), with some threonine (16.7%) and no tyrosine phosphorylation. Autophosphorylation is site-specific: 98% of the phosphate incorporated is recovered in a 26 kDa chymotryptic peptide. Complete tryptic/chymotryptic digestion of this phosphopeptide followed by h.p.l.c. indicates three major phosphorylation sites. Caldesmon exhibits a high degree of substrate specificity: apart from autophosphorylation, brain synapsin I is the only good substrate among many potential substrates examined. These observations indicate that caldesmon may regulate its own function (inhibition of the actomyosin ATPase) by Ca2+/calmodulin-dependent autophosphorylation. Furthermore, caldesmon may regulate other cellular processes, e.g. neurotransmitter release, through the Ca2+/calmodulin-dependent phosphorylation of other proteins such as synapsin I.  相似文献   

4.
Salt dependent dimerisation of caldesmon   总被引:2,自引:0,他引:2  
R A Cross  K E Cross  J V Small 《FEBS letters》1987,219(2):306-310
Using analytical gel filtration (FPLC) we show here that avian gizzard caldesmon (chain molecular mass 150 kDa) self-associates to form end-to-end dimers. Increasing salt concentration promotes dimerisation: at 150 mM KCl, about 40% of the caldesmon was dimeric. Freshly gel filtered caldesmon had an actin gelating activity which decreased with increasing ionic strength. At 150 mM KCl, caldesmon at a 1:90 molar ratio to actin doubled the low shear viscosity of F-actin. Sixfold less filamin was required to produce the same effect.  相似文献   

5.
6.
Polymerization of G-actin by caldesmon   总被引:1,自引:0,他引:1  
Electron microscopy of negatively stained samples indicates that caldesmon induces polymerization of G-actin into filaments. Polymerization takes place in a very low ionic strength solution and is accompanied by an increase of intensity of fluorescence of G-actin labelled with N-(1-pyrenyl)iodoacetamide. The effect of caldesmon is abolished by calmodulin in the presence of Ca2+.  相似文献   

7.
A calmodulin-binding peptide of caldesmon   总被引:4,自引:0,他引:4  
Caldesmon is a major actin-binding protein identified in smooth muscle and many non-muscle cells. It also interacts with calmodulin and a number of other acidic proteins. We have shown previously that the polypeptide stretch from Val629 to Ser666 near the C terminus contains a calmodulin binding site (Wang, C.-L. A., Wang, L.-W. C., Xu, S., Lu, R. C., Saavedra-Alanis, V., and Bryan, J. (1991) J. Biol. Chem. 266, 9166-9172). On the other hand, Bartegi et al. (Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) reported a cyanogen bromide fragment beginning at Trp659 which is also capable of binding both calmodulin and actin. A comparison of the overlapping sequence between these two peptides suggests that this calmodulin binding site is localized in a 7-residue segment, 659Trp-Glu-Lys-Gly-Asn-Val-Phe665. We have chemically synthesized an 18-residue peptide (GS17C, from Gly651 to Ser667 with an added cysteine at the C terminus) that contains this segment. This peptide was purified by high performance liquid chromatography and labeled with fluorescent probes at the terminal cysteine residue. We found that GS17C indeed binds calmodulin in a Ca(2+)-dependent manner (Kd = 8 x 10(-7) M) and appears to compete with caldesmon. Interestingly, this synthetic peptide also co-sediments with F-actin, binding to actin being displaceable by calmodulin, as in the case of the native caldesmon. But GS17C does not have any effect on the actomyosin ATPase activity, indicating that this peptide segment does not contain the inhibitory region.  相似文献   

8.
We previously reported that caldesmon (CaD), together with tropomyosin (TM), effectively protects actin filaments from gelsolin, an actin-severing protein. To elucidate the structure/function relationship of CaD, we dissected the functional domain of CaD required for the protection. The basic C-terminal half of rat nonmuscle CaD (D3) inhibits gelsolin activity to the same degree as intact CaD, although a smaller C-terminal region of D3 does not. This smaller C-terminal region contains the minimum regulatory domain responsible for the inhibition of actomyosin ATPase, and for the binding to actin, calmodulin and TM. These results suggest that the domain responsible for the inhibition of gelsolin activity lies outside the minimum regulatory domain, and that the positive charge possessed by the C-terminal half of CaD is important for its interaction with actin. Moreover, while the D3 fragment promotes the aggregation of F-actin into bundles as reported previously, this bundle formation is inhibited by the acidic N-terminal half of CaD, as well as by poly-l-glutamate. It seems likely that the acidic N-terminal half of CaD neutralizes the superfluous basic feature of the C-terminal half. A comparison between D3 and calponin, another actin-binding protein that is also basic and has similar actin-regulatory activities, is also discussed.  相似文献   

9.
张大鹏  王进  杨洁  华子春 《病毒学报》2004,20(4):371-377
严重急性呼吸综合片冠状病毒(SARS病毒)的高危害性,使得研究其分子机制并开发有效的治疗药物成为当前生物学家面临的紧迫任务.  相似文献   

10.
Characterization of caldesmon binding to myosin   总被引:3,自引:0,他引:3  
Caldesmon inhibits the binding of skeletal muscle subfragment-1 (S-1).ATP to actin but enhances the binding of smooth muscle heavy meromyosin (HMM).ATP to actin. This effect results from the direct binding of caldesmon to myosin in the order of affinity: smooth muscle HMM greater than skeletal muscle HMM greater than smooth muscle S-1 greater than skeletal muscle S-1 (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1878-1885). We now show that the difference between skeletal muscle HMM and S-1 is due to the presence of the S-2 region in HMM and is unrelated to light chain composition or to two-headed versus single-headed binding. Differences between the binding of smooth and skeletal muscle myosin subfragments to actin do not result from the lack of light chain 2 in skeletal muscle S-1. In the presence of ATP, caldesmon binds to smooth muscle myosin filaments with a stoichiometry of 1:1 (K = 1 x 10(6) M-1). Similar results were obtained for the binding of caldesmon to smooth muscle rod as well as the binding of the purified myosin-binding fragment of caldesmon to smooth muscle myosin. The binding of caldesmon to intact myosin is ATP sensitive. The interaction of caldesmon with myosin is apparently specific and sensitive to the structure of both proteins.  相似文献   

11.
Mitosis-specific phosphorylation by cdc2 kinase causes nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678; Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Nature 349, 169-172). To explore the function of mitosis-specific phosphorylation of caldesmon, in vivo- and in vitro-phosphorylated caldesmons have been characterized. We have found that both in vivo and in vitro phosphorylation of caldesmon causes similar changes in the properties, including reduction in actin, calmodulin, and myosin binding of caldesmon, and a decrease in the inhibition of actomyosin ATPase by caldesmon. Rat non-muscle caldesmon is phosphorylated in vitro up to a ratio of 7 mol/mol of protein. Actin-binding constants of both a high affinity (K a = 1.2 x 10(7) M-1) and a low affinity (K a = 1 x 10(6) M-1) site of unphosphorylated caldesmon are reduced to less than 10(5) M-1 with 5 mol of phosphate incorporation per mol of protein. Actin-bound caldesmon can be phosphorylated by cdc2 kinase, which results in the dissociation of caldesmon from F-actin. Caldesmon has a second myosin-binding site in the C terminus, in addition to the N terminus myosin-binding domain previously reported, because the bacterially expressed C terminus of caldesmon shows binding to myosin. Phosphorylation of the C-terminal fragments decreases their myosin-binding affinity as observed with intact caldesmon. These results suggest that caldesmon loses most of its in vitro functions during mitosis as a result of phosphorylation, which may be required for the reorganization of microfilaments during mitosis.  相似文献   

12.
Caldesmon, an actin- and calmodulin-binding protein of smooth muscle, is a protein serine/threonine kinase capable of Ca2+/calmodulin-dependent autophosphorylation [Scott-Woo & Walsh (1988) Biochem. J. 252, 463-472]. Phosphorylation nullifies the inhibitory effect of caldesmon on the actin-activated Mg2+-ATPase activity of smooth-muscle myosin [Ngai & Walsh (1987) Biochem. J. 244, 417-425]. We have characterized the kinase activity of caldesmon of chicken gizzard smooth muscle. Autophosphorylation requires Ca2+/calmodulin, but is unaffected by other second messengers (Ca2+/phospholipid/diacylglycerol, cyclic AMP or cyclic GMP), and is inhibited by the calmodulin antagonists chlorpromazine and compound 48/80, with 50% inhibition at 39.8 microM and 12.0 ng/ml respectively. Half-maximal activation of autophosphorylation occurs at 60-80 nM-Ca2+ and 0.14 microM-calmodulin, and maximal activity at 0.14-0.18 microM-Ca2+ and 1 microM-calmodulin; activation is gradually lost at higher Ca2+ and calmodulin concentrations. Autophosphorylation is pH-dependent, with maximal activity over the range pH 7-9, and requires free Mg2+ in addition to the MgATP2- substrate. The Km for ATP is 15.6 +/- 4.1 microM (mean +/- S.D., n = 4), and kinase activity is inhibited by increasing ionic strength [half-maximal inhibition at I = 0.094 +/- 0.009 M (mean +/- S.D., n = 4)]. Autophosphorylation does not affect the rate of hydrolysis of caldesmon (free or bound to calmodulin) by alpha-chymotrypsin. However, a slight difference in peptides generated from phospho- and dephospho-forms of caldesmon is observed. The binding of phospho- or dephospho-caldesmon to F-actin protects the protein against chymotryptic digestion, but does not alter the pattern of peptide generation. Characterization of proteolytic fragments of caldesmon generated by alpha-chymotrypsin and Staphylococcus aureus V8 protease enables localization of the phosphorylation sites and the kinase active site within the caldesmon molecule.  相似文献   

13.
14.
Localization of the calmodulin- and the actin-binding sites of caldesmon   总被引:11,自引:0,他引:11  
Expression of the C-terminal third of chicken gizzard caldesmon in Escherichia coli, using the Nagai vector (Nagai, K., and Th?gersen, H.V. (1987) Methods Enzmol. 153, 461-481), produces a cII-caldesmon fusion protein (27 kDa) with caldesmon sequence beginning at Lys579. Degradation during purification yields five peptides with molecular masses of 24, 22, 19 (two peptides), and 15 kDa. The 24-kDa peptide begins at Phe581; the 22-kDa peptide begins at Leu597, the two 19-kDa peptides begin at Phe581 and Val629, respectively; the 15-kDa peptide also begins at Val629. We estimate that the 15-kDa and one of the 19-kDa peptides end near Leu710. Site-directed mutagenesis was used to produce truncated peptides with known C termini; one peptide (17 kDa) terminates at Asn675. Digestion of the fragments with chymotrypsin generates a second 15-kDa fragment that begins at Ser666 (15K'). All of the peptides, with the exception of 15K', bind Ca(2+)-calmodulin-Sepharose and share a common 37-amino acid peptide between Val629 and Ser666, suggesting this contains the calmodulin binding site. Comparison with published sequences (Takagi, T., Yazawa, M., Ueno, T., Suzuki, S., and Yagi, K. (1989) J. Biochem. (Tokyo) 106, 778-783 and Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) for other calmodulin-binding fragments further restricts the binding site to 7 residues, Trp-Glu-Lys-Gly-Asn-Val-Phe, between Trp659 and Ser666. All of the fragments, except the two 15-kDa peptides, co-sediment with F-actin, indicating that there are two segments in the C-terminal third of caldesmon that can interact with F-actin: one between Leu597 and Val629, the other between Arg711 and Pro756. Although separated in the primary sequence, these domains may interact with the calmodulin-binding region in the folded structure.  相似文献   

15.
The fraction of polyclonal caldesmon antibodies cross-reacting with rabbit skeletal troponin T are shown to compete with smooth muscle tropomyosin for caldesmon and troponin T, as revealed by ELISA method. The epitope recognized by these antibodies was also found in Mr 77 kDa non-muscle caldesmon. These results provide functional confirmation for the suggestion that the regions of amino acid sequence homology in caldesmon isoforms and troponin T belong to the tropomyosin binding sites.  相似文献   

16.
Domain mapping of chicken gizzard caldesmon   总被引:5,自引:0,他引:5  
Limited proteolysis, affinity chromatography, and immunoblotting have been used to define the domains of chicken gizzard caldesmon, caldesmon120, that interact with calmodulin, F-actin, and a monoclonal antibody prepared using human platelet caldesmon. Treatment of caldesmon120 with chymotrypsin produces groups of fragments near 100, 80, 60, 38, and 20 kDa. Further digestion produces peptides between 40 and 50 kDa. The 100- and 80-kDa peptides cross-react with the monoclonal antibody; the smaller polypeptides do not. The kinetics of cleavage and the antibody studies indicate that the 38- and 80-kDa fragments are the two major pieces of the 120-kDa protein. The 38-kDa fragment, purified by high performance liquid chromatography, and several of its subfragments at 21 and 25 kDa sediment with F-actin, bind to calmodulin-Sepharose in the presence of Ca2+, and are displaced from F-actin by Ca2+-calmodulin. The 80-kDa fragments did not interact with F-actin or calmodulin. We have tentatively placed the 38-kDa fragment at the C-terminal using polyclonal antibodies selected against a beta-galactosidase-caldesmon120 fusion protein produced by a lambda gt11 lysogen. The 38-, 25-, and 21-kDa fragments cross-react with these antibodies; the 80- and 60-kDa fragments do not. Caldesmon77 from human platelets also cross-reacts with these selected antibodies. The results suggest that interacting calmodulin and F-actin binding sites are localized on a 38-kDa C-terminal fragment of caldesmon. The smallest subfragment of this peptide that binds to both F-actin and calmodulin-Sepharose is about 21 kDa. The monoclonal antibody epitope is tentatively localized near the N-terminal of caldesmon77 and must be within 50 kDa of the N-terminal on caldesmon120.  相似文献   

17.
We have proposed earlier that caldesmon inhibits the actin-activated ATPase activity of smooth muscle heavy meromyosin (HMM) by inhibiting the binding of the HMM.ATP complex to the productive site of actin (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1868-1885). This has been difficult to prove directly because caldesmon also binds to HMM and it is difficult to distinguish the actin-caldesmon-HMM complex from the actin-caldesmon complex in binding studies. We have eliminated the interaction between caldesmon and smooth HMM by digestion of caldesmon with chymotrypsin. This cleaved caldesmon inhibits the actin-activated ATPase rate of smooth HMM and this inhibition is correlated with a decrease in the binding of HMM.ATP to actin. Therefore, caldesmon functions by inhibiting the binding of the myosin-ATP complex to actin regardless of the source of myosin. We have also isolated the myosin-binding region of caldesmon and have performed a partial sequence. Comparison of this sequence with the derived sequence of caldesmon demonstrates, unequivocally, that the myosin-binding region of caldesmon begins at the amino terminus and extends beyond the first Cys residue.  相似文献   

18.
Smooth muscle caldesmon binds actin and inhibits actomyosin ATPase activity. Phosphorylation of caldesmon by extracellular signal-regulated kinase (ERK) reverses this inhibitory effect and weakens actin binding. To better understand this function, we have examined the phosphorylation-dependent contact sites of caldesmon on actin by low dose electron microscopy and three-dimensional reconstruction of actin filaments decorated with a C-terminal fragment, hH32K, of human caldesmon containing the principal actin-binding domains. Helical reconstruction of negatively stained filaments demonstrated that hH32K is located on the inner portion of actin subdomain 1, traversing its upper surface toward the C-terminal segment of actin, and forms a bridge to the neighboring actin monomer of the adjacent long pitch helical strand by connecting to its subdomain 3. Such lateral binding was supported by cross-linking experiments using a mutant isoform, which was capable of cross-linking actin subunits. Upon ERK phosphorylation, however, the mutant no longer cross-linked actin to polymers. Three-dimensional reconstruction of ERK-phosphorylated hH32K indeed indicated loss of the interstrand connectivity. These results, together with fluorescence quenching data, are consistent with a phosphorylation-dependent conformational change that moves the C-terminal end segment of caldesmon near the phosphorylation site but not the upstream region around Cys(595), away from F-actin, thus neutralizing its inhibitory effect on actomyosin interactions. The binding pattern of hH32K suggests a mechanism by which unphosphorylated, but not ERK-phosphorylated, caldesmon could stabilize actin filaments and resist F-actin severing or depolymerization in both smooth muscle and nonmuscle cells.  相似文献   

19.
Binding of caldesmon to smooth muscle myosin   总被引:9,自引:0,他引:9  
Caldesmon, a major calmodulin binding protein, was found to bind smooth muscle myosin. Addition of caldesmon to smooth muscle myosin induced the formation of small aggregates of myosin in the absence of Ca2+-calmodulin, but not in the presence of Ca2+-calmodulin. The binding site of myosin was studied by using caldesmon-Sepharose 4B affinity chromatography. Subfragment 1 was not retained by the column, while heavy meromyosin and subfragment 2 were bound to the caldesmon affinity column in the absence of Ca2+-calmodulin but not in its presence. It was therefore concluded that the binding site of caldesmon on myosin molecule was the subfragment 2 region and that binding of caldesmon to myosin was abolished in the presence of Ca2+ and calmodulin. Cross-linking of actin and myosin mediated by caldesmon was studied. While actomyosin was completely dissociated in the presence of Mg2+-ATP, the addition of caldesmon caused aggregation of the actomyosin. By low speed centrifugation at which actomyosin alone was not precipitated in the presence of Mg2+-ATP, the aggregate induced by caldesmon was precipitated and the composition of the precipitate was found to be actin, caldesmon, and myosin. In the presence of Mg2+-ATP, pure actin did not bind to a myosin-Sepharose 4B affinity column, while all of the actin was retained when the actin/caldesmon mixture was applied to the column. These results indicate that caldesmon can cross-link actin and myosin.  相似文献   

20.
Disulfide cross-linking of caldesmon to actin.   总被引:2,自引:0,他引:2  
Treatment of a solution of actin and smooth muscle caldesmon with 5,5'-dithiobis(2-nitrobenzoic acid) results in the formation of a disulfide cross-link between the C-terminal penultimate residue Cys-374 of actin and Cys-580 in caldesmon's C-terminal actin-binding region. Therefore, these 2 residues are close in the actin-caldesmon complex. Since myosin also binds to actin in the vicinity of Cys-374 and since caldesmon inhibits actomyosin ATPase activity by the reduction of myosin binding to actin, then the inhibition might be by caldesmon sterically hindering or blocking myosin's interaction with actin. [Ca2+]Calmodulin, which reverses the inhibition of the ATPase activity, decreases the yield of the cross-linked species, suggesting a weakening of the caldesmon-actin interaction in the cross-linked region. It is possible to maximally cross-link one caldesmon molecule/every three actin monomers, in the absence or presence of tropomyosin, clearly ruling out an elongated, end-to-end alignment of caldesmon on the actin filament in vitro, and raising the possibility that the N-terminal part of caldesmon projects out from the filament. Reaction of 5,5'-dithiobis(2-nitrobenzoic acid)-modified actin with caldesmon leads to the same disulfide cross-linked product between actin and caldesmon Cys-580, enabling the specific labeling of the other caldesmon cysteine, residue 153, in the N-terminal part of caldesmon with a spectroscopic probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号