首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavioral interactions between a cyclopoid copepod predator and its prey   总被引:4,自引:0,他引:4  
Behavioral observations on the predatory interactions betweenMesocyclops edax and several different types and sizes of preyrevealed that prey size alone was less important than otherspecific morphological and behavioral characteristics of theprey in deterring successful predation by the copepod. The behavioralresponses of Bosmina and Asplanchna to an attacking copepodwere passive and consisted of a simple retraction of vulnerableswimming appendages which made the prey more difficult to grasp.Daphnia and Diaphanosoma on the other hand exhibited very activeswimming escape responses. Tropocyclops usually avoided M. edaxby fleeing before the larger predator could detect them. Thehard carapaces of Daphnia, Bosmina and Keratella were effectiveat reducing ingestion following capture by M. edax. The resultsof these behavioral observations were supported by enclosureexperiments in which the predator was offered a choice betweentwo prey simultaneously. Cyclopoid copepods are capable of successfullyattacking, capturing and ingesting prey organisms several timestheir own body length. Although size alone may influence thepreference of cyclopoid copepods on large and small individualsof the same or similar prey species, it is not a dependabledeterminant of the preference of cyclopoids on multispecificprey assemblages. 1Present address: Department of Biology, Williams Hall No. 31,Lehigh University, Bethlehem, PA 18015, USA  相似文献   

2.
Using numerical techniques, we explored the dynamics of a one-dimensional,six-component nutrient–phytoplankton–zooplankton(NPZ) model in which zooplankton grazed on a mixed prey field.Five alternative functional forms were implemented to describezooplankton grazing, and the form for predation on mesozooplanktonwas prescribed by a product of a specific predation rate (h)and the mesozooplankton concentration raised to a power (q),which we varied between one and two. With all five grazing functions,Hopf bifurcations, where the form of the solution transitionedbetween steady equilibrium and periodic limit cycles, persistedacross the qh parameter space. Regardless of the valuesof h and q, with some forms of the grazing function, we wereunable to find steady equilibrium solutions that simultaneouslycomprised non-zero concentrations for all six model components.Extensions of Michaelis–Menten-based single resource grazingformulations to multiple resources resulted in periodic solutionsfor a large portion of the qh space. Conversely, extensionsof the sigmoidal grazing formulation to multiple resources resultedin steady solutions for a large portion of qh parameterspace. Our results demonstrate the consequences of the functionalform of biological processes on the form of the model solutions.Both the steady or oscillatory nature of state variable concentrationsand the likelihood of their elimination are important considerationsfor ecosystem-modelling studies, particularly when attemptingto model an ecosystem in which multiple phytoplankton and zooplanktoncomponents are thought to persist simultaneously for at leasta portion of the seasonal cycle.  相似文献   

3.
In nature, animals are classified into two large groups. Those that form the prey and that form the predator. A prey animal runs for its life when chased by a predatory animal. When prey animals escape from the chasing enemy, they generally use two types of evasive motion. Those are a straight-line escape motion and a zigzag-line escape motion. A fleeing prey switches between two types of evasive behavior in a manner depending on the predator's performance.I propose a mathematical model that expresses behaviors between a prey and a predator. This model brings that a straight-line escape motion is a better solution for an escape from a slow and far predator. On the other hand, an evasive motion for a near or fast enemy is a zigzag-line escape motion. This model suggests that animals have the best evasive strategy.  相似文献   

4.
We investigated the potential for indirect interactions between two prey species, pea aphids ( Acyrthosiphon pisum ) and potato leafhoppers ( Empoasca fabae ), through a shared predator (Nabis spp.), and how these interactions may change across three spatial scales. In greenhouse experiments using small clusters of plants containing pea aphids and/or potato leafhoppers, the predation rates on both pea aphids and potato leafhoppers were independent of the presence of the other species, indicating no indirect interactions. In greenhouse experiments using cages containing 48 plants, when aphids and leafhoppers were confined to separate plants among which nabids could move, pea aphids had a positive effect on the survival of potato leafhoppers from predation. The positive effect of aphids on leafhoppers occurred because nabids spent more time on plants harboring aphids, thereby drawing nabids away from plants containing leafhoppers. Finally, we measured the abundance of nabids in a large-scale experiment designed to manipulate the abundances of pea aphids and potato leafhoppers in alfalfa fields. Fields with high aphid density contained more nabids, thereby suggesting that pea aphids will have a negative indirect effect on potato leafhoppers by increasing the density of nabids within fields. Potato leafhoppers had no indirect effects on pea aphids at any scale. This study shows that indirect interactions between prey species may depend upon spatial scale, because the factors affecting a predator's diet choice on a small scale may differ from those factors affecting a predator's distribution at larger scales.  相似文献   

5.
Using nationwide long-term data on goshawk and grouse populations in Finland we study the spatial dynamics of the numbers of breeding northern goshawk ( Accipiter gentilis ) pairs, goshawk brood size and offspring sex ratio and their connection to the abundance of grouse. Our first large-scale data comprise of observations on goshawk nests during 1986–2001 pooled to 21 different regions. The second set are annual (1989–1998) observations of brood size and offspring sex ratio (females over the sum of females and males) in goshawk nests all over the country, aggregated to 50 km grid level (n=28 grid units). The third set comprises counts (1989–2001) of four species of woodland grouse, split to adults and juveniles, also given in the same 50 km grid units. Using these data, we show that the annual numbers of northern goshawk nests in the different regions fluctuate in synchrony. Synchrony is also found in long-term fluctuations of northern goshawk brood size and offspring sex ratio. Moreover, synchrony is found in annual numbers of grouse juveniles and adults, the main prey for the northern goshawk. In the brood size and offspring sex ratio of the goshawk, as well as in the annual numbers of grouse juveniles and adults the degree of synchrony falls off with increasing distance. However, only in sex ratios and in grouse dynamics are the slopes of synchrony vs distance roughly matching. We also found that sex ratio either vs grouse juveniles or grouse adults has a more matching spatial dimension (50 km radius) that sex ratio vs brood size. These observation lend support to the hypothesis that goshawk offspring sex ratio and grouse abundance are interconnected. Despite the reason, consequences of spatial coupling in sex ratio could have repercussions on other life history events.  相似文献   

6.
Prey refuges are expected to affect population dynamics, but direct experimental tests of this hypothesis are scarce. Larvae of western flower thrips Frankliniella occidentalis use the web produced by spider mites as a refuge from predation by the predatory mite Neoseiulus cucumeris. Thrips incur a cost of using the refuge through reduced food quality within the web due to spider mite herbivory, resulting in a reduction of thrips developmental rate. These individual costs and benefits of refuge use were incorporated in a stage-structured predator-prey model developed for this system. The model predicted higher thrips numbers in presence than in absence of the refuge during the initial phase. A greenhouse experiment was carried out to test this prediction: the dynamics of thrips and their predators was followed on plants damaged by spider mites, either with or without web. Thrips densities in presence of predators were higher on plants with web than on unwebbed plants after 3 weeks. Experimental data fitted model predictions, indicating that individual-level measurements of refuge costs and benefits can be extrapolated to the level of interacting populations. Model-derived calculations of thrips population growth rate enable the estimation of the minimum predator density at which thrips benefit from using the web as a refuge. The model also predicted a minor effect of the refuge on the prey density at equilibrium, indicating that the effect of refuges on population dynamics hinges on the temporal scale considered.  相似文献   

7.
8.
1 Aphid populations may show strong year-to-year fluctuations, but questions remain regarding the dominance of factors that cause this variation, especially the role of natural enemies. To better understand the dynamics of aphid species that occur as pests in cereals, we investigated the relative influence of top-down control by a predator and weather (temperature and precipitation) on population fluctuations of three cereal aphid species.
2 From 1987 to 2005, populations of Metopolophium dirhodum , Sitobion avenae and Rhopalosiphum padi in insecticide-free stands of winter wheat were monitored in the Praha-Ruzyné region of the Czech Republic. Densities of an aphidophagous predator, the ladybeetle Coccinella septempunctata , were recorded from an overwintering site in the landscape. Weather was quantified using historical records.
3 A significant bottom-up effect of densities of aphids on those of C.   septempunctata was found, but evidence of direct top-down regulation of aphids by C.   septempunctata was only significant in the case of R.   padi . There was no significant periodicity in the dynamics of the aphid or C.   septempunctata , suggesting that there was no clear predator-prey cycle. Combinations of C.   septempunctata and weather variables could be used to explain M.   dirhodum and R.   padi per capita rate of change. There were also indications that weather directly affected peak density of M.   dirhodum .
4 We conclude that regional estimates of C.   septempunctata densities are not sufficient to determine whether aphid population dynamics are driven by predator–prey interactions. Feasibility of time series analysis as an investigative tool in aphid population dynamics studies is discussed.  相似文献   

9.
10.
11.
Summary Seasonal and diel activity patterns of mergansers, gulls, and terns along a river in northern Sweden were documented, as were those of their fish prey. The seasonal and diel activity patterns of goosandersMergus merganser and gulls (Larus canus, L. argentatus, andL. fuscus) were closely related to that of the river lampreyLampetra fluviatilis. During the peak spawning of the river lamprey, birds showed a nocturnal peak in fishing activity. During the summer solstice, birds were active for 24 h. The activity patterns of red-breasted merganserMergus serrator, ternsSterna spp., and three-spined sticklebacksGasterosteus aculeatus were also similar. Activity pattern of the prey apparently influenced breeding time, diel activity and foraging area of the twoMergus species. Social relations between gulls probably corrdinated their peak in fishing, which coincided with the time lampreys were most efficiently exploited.  相似文献   

12.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

13.
Several management strategies for ecosystems with biological interaction are discussed, including predator removal, predator-prey coexistence, prey exploitation, overexploitation, and introduction of sanctuaries. Some case studies related to ecosystem management are briefly presented; these describe Lakes Victoria and Tanganyika, discarding from shrimp trawl fisheries and the development in the North Sea that led to introduction of multispecies analysis. The concept of fishing down the food web is discussed and the average trophic levels at which the fisheries operate in different ecosystem types are estimated based on quantified trophic flow models. On a global level, while on average fisheries operate around two trophic levels above the primary producers, still one third of the catch of the 70 major fish species caught in the world is of piscivorous fish. Using exploitation-predation rate indices for different ecosystem types, the amount of finfish consumed globally by finfish is roughly estimated to be three times the catches of finfish. Finally some implications for the management of ecosystems are drawn up. It makes little difference if short-term prognoses are based on single-species or multispecies considerations. Multispecies models may, however, give the better long-term advice, and adaptive management may facilitate the move towards such long-term goals.  相似文献   

14.
We identified, staged and counted the immature stages of mosquitoes from 1,826 censuses (with replacement) of the aquatic contents of ten treeholes surveyed every 2 weeks between 1978 and 1993. These time series were used to examine the population dynamics and effect on prey of the predatory mosquito Toxorhynchites rutilus. The mean annual frequency of occurrence of T. rutilus ranged from 0.02 to 0.67 among holes, and no fourth instars were recovered during a 30-month dry period. Oviposition and pupation by this species were recorded in all months, but most commonly in the spring. Overwintering larvae of the predator increased in weight during the prolonged fourth instar that preceded pupation in the spring. Time series analyses showed that the presence of a fourth instar T. rutilus significantly reduced the abundances of late-stage Aedes triseriatus mosquitoes. Pupal numbers of this prey species were more negatively affected by T. rutilus than were numbers of fourth instar A. triseriatus. Long-term declines in mean annual abundance of A. triseriatus prey during 16 years of observations on two holes were not correlated with increases in the mean annual frequencies of T. rutilus. Local extinctions of the aquatic stages of A. triseriatus within treeholes were common, but in most holes not significantly associated with the presence of T. rutilus, suggesting that predation does not routinely drive mosquito prey locally extinct in this ecosystem. The decoupling of T. rutilus and A. triseriatus, as revealed through these complete and long-term censuses, is contrasted with other reports of generalist predators causing extinctions of mosquito prey. Discrepancies among reported outcomes probably result from differences in duration of sampling periods and statistical procedures along with real differences in the intensity of predation among systems and sites. Received: 14 August 1996 / Accepted: 24 February 1997  相似文献   

15.
Li C  Wang E  Wang J 《PloS one》2011,6(3):e17888
Predator-prey system, as an essential element of ecological dynamics, has been recently studied experimentally with synthetic biology. We developed a global probabilistic landscape and flux framework to explore a synthetic predator-prey network constructed with two Escherichia coli populations. We developed a self consistent mean field method to solve multidimensional problem and uncovered the potential landscape with Mexican hat ring valley shape for predator-prey oscillations. The landscape attracts the system down to the closed oscillation ring. The probability flux drives the coherent oscillations on the ring. Both the landscape and flux are essential for the stable and coherent oscillations. The landscape topography characterized by the barrier height from the top of Mexican hat to the closed ring valley provides a quantitative measure of global stability of system. The entropy production rate for the energy dissipation is less for smaller environmental fluctuations or perturbations. The global sensitivity analysis based on the landscape topography gives specific predictions for the effects of parameters on the stability and function of the system. This may provide some clues for the global stability, robustness, function and synthetic network design.  相似文献   

16.
Recent studies have revealed that the prevalence of Wolbachia in arthropods is attributable not only to its vertical transmission, but also to its horizontal transfer. In order to assess the horizontal transmission of Wolbachia between predator and prey, arthropods belonging to 11 spider families and six insect families were collected in the same field of rice. The distribution of Wolbachia in these arthropods was detected by diagnostic PCR amplification of the wsp (Wolbachia outer surface protein gene) and 16S rDNA genes. Nurscia albofasciata Strand (Araneae: Titanoecidae), Propylea japonica Thunberg (Coleoptera: Coccinellidae), Paederus fuscipes Curtis (Coleoptera: Staphylinidae), and Nilaparvata lugens Stal (Homoptera: Delphacidae) were infected with Wolbachia. This is the first report of infection of N. albofasciata and P. fuscipes by Wolbachia. No direct evidence indicated the existence of horizontal transmission of Wolbachia between predator and prey.  相似文献   

17.
Prey use their locomotory capacity to escape predators, and there should thus be strong viability selection on locomotory morphology of prey. We compared feather morphology of wood pigeons Columba palumbus killed by goshawks Accipiter gentilis with that of survivors to quantify directional and quadratic selection on primary and rectrix feathers. The goshawk is mainly a predator attacking by surprise, leaving wood pigeons with an ability to accelerate fast at a selective advantage. There was directional selection for light primary feathers with a narrow calamus. In addition, there was directional selection for increased area of rectrices. These patterns of natural selection were confirmed in multivariate analyses of selection that showed selection for light primary feathers with a large area and narrow calamus and for a large area of rectrix feathers. These results provide evidence of selection on different aspects of feather morphology directly related to flight performance and thus escape ability from predators.  相似文献   

18.
Species have phenological variation among local habitats that are located at relatively small spatial scales. However, less studies have tested how this spatial variability in phenology can mediate intra-/inter-specific interactions. When predators track phenological variation of prey among local habitats, survival of prey within a local habitat strongly influenced by phenological synchrony with their conspecifics in adjacent habitats. Theory predicts that phenological synchrony among local habitats increases prey survival in local habitat within spatially structured environments because the predators have to make a habitat choice for foraging. Consequently, total survival of prey at regional scale should be higher. By using a spatially explicit field experiment, we tested above hypothesis using a prey–predator interaction between tadpole (Rhacophorus arboreus) and newt (Cynops pyrrhogaster). We established enclosures (≈regional scale) consisting of two tanks (≈local habitat scale) with different degree of prey phenological synchrony. We found that phenological synchrony of prey between tanks within each enclosure decreased the mean residence time of the predator in each tank, which resulted in higher survival of prey at a local habitat scale, supporting the theoretical prediction. Furthermore, individual-level variation in predator residence time explained the between-tank variation in prey survival in enclosures with phenological synchrony, implying that movement patterns of the predator can mediate variation in local population dynamics of their prey. However, total survival at each enclosure was not higher under phenological synchrony. These results suggest the importance of relative timing of prey phenology, not absolute timing, among local habitats in determining prey–predator interactions.  相似文献   

19.
20.
The encounter speed of moving predator and prey   总被引:4,自引:0,他引:4  
A Gaussian model for the distribution of swimming velocitiesof planktonic organisms predicts that if predator and prey havemodal speeds v and u respectively, then their modal relativespeed is simply (u2+v2). This is more convenient, and no lessrealistic, than more complicated formulas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号