首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IQGAP1 is a plasma membrane-associated protein and an important regulator of the actin cytoskeleton, contributing to cell migration, polarity and adhesion. In this study, we demonstrate the nuclear translocation of IQGAP1 using confocal microscopy and cell fractionation. Moreover, we identify a specific pool of IQGAP1 that accumulates in the nucleus during late G1-early S phase of the cell cycle. The nuclear targeting of IQGAP1 was facilitated by N- and C-terminal sequences, and its ability to slowly shuttle between nucleus and cytoplasm/membrane was partly regulated by the CRM1 export receptor. The inhibition of GSK-3β also stimulated nuclear localization of IQGAP1. The dramatic nuclear accumulation of IQGAP1 observed when cells were arrested in G1/S phase suggested a possible role in cell cycle regulation. In support of this, we used immunoprecipitation assays to show that the nuclear pool of IQGAP1 in G1/S-arrested cells associates with DNA replication complex factors RPA32 and PCNA. More important, the siRNA-mediated silencing of IQGAP1 significantly delayed cell cycle progression through S phase and G2/M in NIH 3T3 cells released from thymidine block. Our findings reveal an unexpected regulatory pathway for IQGAP1, and show that a pool of this cytoskeletal regulator translocates into the nucleus in late G1/early S phase to stimulate DNA replication and progression of the cell cycle.  相似文献   

2.
S1P (sphingosine 1-phosphate) receptor expression and the effects of S1P on migration were studied in one papillary (NPA), two follicular (ML-1, WRO) and two anaplastic (FRO, ARO) thyroid cancer cell lines, as well as in human thyroid cells in primary culture. Additionally, the effects of S1P on proliferation, adhesion and calcium signalling were addressed in ML-1 and FRO cells. All cell types expressed multiple S1P receptors. S1P evoked intracellular calcium signalling in primary cultures, ML-1 cells and FRO cells. Neither proliferation nor migration was affected in primary cultures, whereas S1P partly inhibited proliferation in ML-1 and FRO cells. Low nanomolar concentrations of S1P inhibited migration in FRO, WRO and ARO cells, but stimulated ML-1 cell migration. Consistently, S1P1 and S1P3, which mediate migratory responses, were strongly expressed in ML-1 cells, and S1P2, which inhibits migration, was the dominating receptor in the other cell lines. The migratory effect in ML-1 cells was mediated by G(i) and phosphatidylinositol 3-kinase. Both S1P and the S1P1-specific agonist SEW-2871 induced Akt phosphorylation at Ser473. However, SEW-2871 failed to stimulate migration, whereas the S1P1/S1P3 antagonist VPC 23019 inhibited S1P-induced migration. The results suggest that aberrant S1P receptor expression may enhance thyroid cancer cell migration and thus contribute to the metastatic behaviour of some thyroid tumours.  相似文献   

3.
The G protein-coupled thrombin receptor, protease-activated receptor 1 (PAR1), mediates many of the actions of thrombin on cells including chemotaxis. In contrast to the reversible agonist binding that regulates signaling by most G protein-coupled receptors (GPCRs), PAR1 is activated by an irreversible proteolytic mechanism. Although activated PAR1 is phosphorylated, uncoupled, and internalized like typical GPCRs, signal termination is additionally dependent on lysosomal degradation of cleaved and activated receptors. In the present study we exploit two PAR1 mutants to examine the link between chemotaxis and receptor shutoff. One, a carboxyl tail deletion mutant (Y397Z), is defective in phosphorylation and internalization. The other, a carboxyl tail chimeric receptor (P/S), is phosphorylated and internalized upon activation but recycles to the plasma membrane like reversibly activated GPCRs. Expression of these receptors in a hematopoietic cell line disrupted cell migration along thrombin gradients. Thrombin activation of cells expressing P/S or Y397Z resulted in persistent signaling independent of the continued presence of thrombin. Signaling in response to the soluble agonist peptide SFLLRN was reversible for P/S but persisted for Y397Z. Strikingly, cells expressing P/S responded chemokinetically to thrombin but chemotactically to SFLLRN. In contrast, Y397Z-mediated migration was largely chemokinetic to both agonists. These studies suggest that termination of PAR1 signaling at the level of the receptor is necessary for gradient detection and directional migration.  相似文献   

4.
T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders.  相似文献   

5.
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34+ progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). FcεRI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (FcεRI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either FcεRI or S1P receptors involves activation of both PI3K and MAPK.  相似文献   

6.
D W Goodrich  N P Wang  Y W Qian  E Y Lee  W H Lee 《Cell》1991,67(2):293-302
The RB gene product is a nuclear phosphoprotein that undergoes cell cycle-dependent changes in its phosphorylation status. To test whether RB regulates cell cycle progression, purified RB proteins, either full-length or a truncated form containing the T antigen-binding region, were injected into cells. Injection of either protein early in G1 inhibits progression into S phase. Co-injection of anti-RB antibodies antagonizes this effect. Injection of RB into cells arrested at G1/S or late in G1 has no effect on BrdU incorporation, suggesting that RB does not inhibit DNA synthesis in S phase. These results indicate that RB regulates cell proliferation by restricting cell cycle progression at a specific point in G1 and establish a biological assay for RB activity. Neither co-injection of RB with a T antigen peptide nor injection into cells expressing T antigen prevents cells from progressing into S phase, which supports the hypothesis that T antigen binding has functional consequences for RB.  相似文献   

7.
Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling.  相似文献   

8.
Sphingosine 1-phosphate (S1P) in blood, lymph, and immune tissues stimulates and regulates T cell migration through their S1P(1) (endothelial differentiation gene encoded receptor-1) G protein-coupled receptors. We show now that S1P(1)Rs also mediate suppression of T cell proliferation and cytokine production. Uptake of [(3)H]thymidine by mouse CD4 T cells stimulated with anti-CD3 mAbs plus either anti-CD28 or IL-7 was inhibited up to 50% by 10(-9)-10(-6) M S1P. Suppression by S1P required Ca(2+) signaling and was reduced by intracellular cAMP. S1P decreased CD4 T cell generation of IFN-gamma and IL-4, without affecting IL-2. A Th1 line from D011.10 TCR transgenic mice without detectable S1P(1) was refractory to S1P until introduction of S1P(1) by retroviral transduction. S1P then evoked chemotaxis, inhibited chemotaxis to CCL-5 and CCL-21, and suppressed Ag-stimulated proliferation and IFN-gamma production. Thus, S1P(1) signals multiple immune functions of T cells as well as migration and tissue distribution.  相似文献   

9.
The spatial targeting of receptors to discrete domains within the plasma membrane allows their preferential coupling to specific effectors, which is essential for rapid and accurate discrimination of signals. Efficiency of signaling is further increased by protein and lipid segregation within the plasma membrane. We have previously demonstrated the importance of raft-mediated signaling in the regulation of smooth and skeletal muscle cell contraction. Since G protein-coupled receptors (GPCRs) are key components in the regulation of smooth muscle contraction-relaxation cycles, it is important to determine whether GPCR signaling is mediated by lipid rafts and raft-associated molecules. Neurokinin 1 receptor (NK1R) is expressed in central and peripheral nervous system as well as in endothelial and smooth muscle cells and involved in mediation of pain, inflammation, exocrine secretion, and smooth muscle contraction. The NK1 receptor was transiently expressed in HEK293 and HepG2 cell lines and its localization in membrane microdomains investigated using biochemical methods and immunofluorescent labeling. We show that the NK1 receptor, similar to the earlier described beta(2)-adrenergic receptor and G proteins, localizes to lipid rafts and caveolae. Protein kinase C (PKC) is one of the downstream effectors of the NK1 activation. Its active form translocates from the cytoplasm to the plasma membrane. Upon stimulation of the NK1 receptor with Substance P, the activated PKC relocated to lipid rafts. Using cholesterol extraction and replenishment assays we show that activation of NK1 receptor is dependent on the microarchitecture of the plasma membrane: NK1R-mediated signaling was abolished after cholesterol depletion of the receptor-expressing cells with methyl-beta-cyclodextrin. Our results demonstrate that reorganization of the plasma membrane has an effect on the activation of the raft-associated NK1R and the down-stream events such as recruitment of protein kinases.  相似文献   

10.
Cellular functions of plasma membrane estrogen receptors   总被引:26,自引:0,他引:26  
Levin ER 《Steroids》2002,67(6):471-475
  相似文献   

11.
A cell surface receptor for thyroid hormone that activates extracellular regulated kinase (ERK) 1/2 has been identified on integrin αvβ3. We have examined the actions of thyroid hormone initiated at the integrin on human NCI-H522 non-small cell lung carcinoma and NCI-H510A small cell lung cancer cells. At a physiologic total hormone concentration (10(-7) M), T(4) significantly increased proliferating cell nuclear antigen (PCNA) abundance in these cell lines, as did 3, 5, 3'-triiodo-L-thyronine (T(3)) at a supraphysiologic concentration. Neutralizing antibody to integrin αvβ3 and an integrin-binding Arg-Gly-Asp (RGD) peptide blocked thyroid hormone-induced PCNA expression. Tetraiodothyroacetic acid (tetrac) lacks thyroid hormone function but inhibits binding of T(4) and T(3) to the integrin receptor; tetrac eliminated thyroid hormone-induced lung cancer cell proliferation and ERK1/2 activation. In these estrogen receptor-α (ERα)-positive lung cancer cells, thyroid hormone (T(4)>T(3)) caused phosphorylation of ERα; the specific ERα antagonist ICI 182,780 blocked T(4)-induced, but not T(3)-induced ERK1/2 activation, as well as ERα phosphorylation, proliferating-cell nuclear antigen (PCNA) expression and hormone-dependent thymidine uptake by tumor cells. Thus, in ERα-positive human lung cancer cells, the proliferative action of thyroid hormone initiated at the plasma membrane is at least in part mediated by ERα. In summary, thyroid hormone may be one of several endogenous factors capable of supporting proliferation of lung cancer cells. Activity as an inhibitor of lung cancer cell proliferation induced at the integrin receptor makes tetrac a novel anti-proliferative agent.  相似文献   

12.
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.  相似文献   

13.
Liver X receptor (LXR), a sterol-activated nuclear hormone receptor, has been implicated in cholesterol and fatty acid homeostasis via regulation of reverse cholesterol transport and de novo fatty acid synthesis. LXR is also involved in immune responses, including anti-inflammatory action and T cell proliferation. In this study, we demonstrated that activated LXR suppresses cell cycle progression and proliferation in certain cell types. Stimulation of LXR with synthetic ligand T0901317 or GW3965 inhibited cell growth rate and arrested the cell cycle at the G1/S boundary in several cells, such as RWPE1, THP1, SNU16, LNCaP, and HepG2. However, LXR ligands did not exhibit antiproliferative activity in PC3, HEK293, or HeLa cells. Interestingly, activated LXR-mediated cell cycle arrest is closely correlated with the lipogenic gene expression and triacylglyceride accumulation. In accordance with these findings, suppression of FAS via small-interference RNA (siRNA) partially alleviated the antiproliferative effect of LXR activation in RWPE1 cells. Together, these data suggest that LXR activation with its ligands inhibits cell proliferation and induces G1/S arrest through elevated lipogenic activity, thus proposing a novel effect of activated LXR on cell cycle regulation.  相似文献   

14.
The role of the protein kinase Akt in cell migration is incompletely understood. Here we show that sphingosine-1-phosphate (S1P)-induced endothelial cell migration requires the Akt-mediated phosphorylation of the G protein-coupled receptor (GPCR) EDG-1. Activated Akt binds to EDG-1 and phosphorylates the third intracellular loop at the T(236) residue. Transactivation of EDG-1 by Akt is not required for G(i)-dependent signaling but is indispensable for Rac activation, cortical actin assembly, and chemotaxis. Indeed, T236AEDG-1 mutant sequestered Akt and acted as a dominant-negative GPCR to inhibit S1P-induced Rac activation, chemotaxis, and angiogenesis. Transactivation of GPCRs by Akt may constitute a specificity switch to integrate rapid G protein-dependent signals into long-term cellular phenomena such as cell migration.  相似文献   

15.
Diacylglycerol kinase (DGK) is suggested to attenuate diacylglycerol-induced cell responses through the phosphorylation of this second messenger to phosphatidic acid. Here, we show that DGKalpha, an isoform highly expressed in T lymphocytes, translocates from cytosol to the plasma membrane in response to two different receptors known to elicit T cell activation responses: an ectopically expressed muscarinic type I receptor and the endogenous T cell receptor. Translocation in response to receptor stimulation is rapid, transient, and requires calcium and tyrosine kinase activation. DGKalpha-mediated phosphatidic acid generation allows dissociation of the enzyme from the plasma membrane and return to the cytosol, as demonstrated using a pharmacological inhibitor and a catalytically inactive version of the enzyme. The NH(2)-terminal domain of the protein is shown to be responsible for receptor-induced translocation and phosphatidic acid-mediated membrane dissociation. After examining induction of the T cell activation marker CD69 in cells expressing a constitutively active form of the enzyme, we present evidence of the negative regulation that DGKalpha exerts on diacylglycerol-derived cell responses. This study is the first to describe DGKalpha as an integral component of the signaling cascades that link plasma membrane receptors to nuclear responses.  相似文献   

16.
17.
18.
Sphingosine-1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors that regulate a wide variety of cellular functions, including cytoskeletal rearrangements and cell motility. Because of the pivotal role of S1P, its levels are low and tightly regulated in a spatial-temporal manner through its synthesis catalyzed by sphingosine kinases and degradation by an S1P lyase and specific S1P phosphatases (SPP). Surprisingly, down-regulation of SPP-1 enhanced migration toward epidermal growth factor (EGF); conversely, overexpression of SPP-1, which is localized in the endoplasmic reticulum, attenuated migration toward EGF. To determine whether the inhibitory effect on EGF-induced migration was because of decreased S1P or increased ceramide as a consequence of acylation of increased sphingosine by ceramide synthase, we used fumonisin B1, a specific inhibitor of ceramide synthase. Although fumonisin B1 blocked ceramide production and increased sphingosine, it did not reverse the negative effect of SPP-1 expression on EGF- or S1P-induced chemotaxis. EGF activated the epidermal growth factor receptor to the same extent in SPP-1-expressing cells, yet ERK1/2 activation was impaired. In agreement, PD98059, an inhibitor of the ERK-activating enzyme MEK, decreased EGF-stimulated migration. We next examined the possibility that intracellularly generated S1P might be involved in activating a G protein-coupled S1P receptor important for EGF-directed migration. Treatment with pertussis toxin to inactivate Galpha(i) suppressed EGF-induced migration. Moreover, expression of regulator of G protein signaling 3, which inhibits S1P receptor signaling and completely prevented ERK1/2 activation mediated by S1P receptors, not only reduced migration toward S1P but also markedly reduced migration toward EGF. Collectively, these results suggest that metabolism of S1P by SPP-1 is important for EGF-directed cell migration.  相似文献   

19.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P(1-5). S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P(1), S1P(2) and S1P(3) all contribute positively to S1P-stimulated glioma cell proliferation, with S1P(1) being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P(5) blocks glioma cell proliferation, and inhibits ERK activation. S1P(1) and S1P(3) enhance glioma cell migration and invasion. S1P(2) inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P(2) also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P(2)-stimulated glioma invasion. Thus, while S1P(2) decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.  相似文献   

20.
Sphingosine 1-phosphate (S1P) is a natural lipid mediator that regulates immune cell traffic, Ab production, and T cell cytokine generation by mechanisms that enhance Th2 activities. Responses to S1P are controlled principally by the diverse expression patterns of its receptors in different cells. In T cells, the type 1 (S1P(1)) and type 4 (S1P(4)) G protein-coupled receptors are predominant. S1P(1) mainly transduces effects on T cell migration and trafficking, whereas S1P(4) transduces immunosuppression via its effects on T cell proliferation and cytokine production. Using T cell-specific S1P(1) transgenic (TG) mice, we investigated the regulatory effects of the S1P-S1P(1) axis on T cell cytokine production. The production of IL-4, but not IL-2 or IFN-gamma, was significantly up-regulated >10-fold in activated CD4 T cells from S1P(1) TG mice compared with those from wild-type mice. Quantitative real-time PCR analysis revealed that IL-4 up-regulation was initiated at the mRNA level as early as 4 h after T cell activation. The up-regulation of IL-4 mRNA was mediated by c-Maf, Jun B, and Gata3 as demonstrated by increases in their protein expression and DNA-binding activities. In contrast, the expression and DNA-binding activities of T-bet, FosB, C-Fos, Jun D, Fra-1, Fra-2, and c-Jun all were identical in wild-type and TG CD4 T cells. Immunological assays showed that increased IL-4 levels induced greater production of IgE. Thus, the S1P-S1P(1) axis specifically up-regulates c-Maf, Jun B, and Gata3, which consequently enhance IL-4 production that may lead to a Th2 phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号