首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G M Ignat'eva 《Ontogenez》1974,5(5):427-436
The absolute (in min.) and relative (in the number of tau0) duration of the periods of cleavage, epiboly and that between the onset of gastrulation and the stage of 10 pairs of somites were determined in Cyprinus carpio L., Misgurnus fossils L., Esox lucius L. and Coregonus peled Gmel. at different constant temperatures. The stability of the dimensionless characteristics for the duration of each of these periods in the species in question within the limits of optimum temperatures was shown. A comparison of the relative duration of the same periods of early embryogenesis in C. carpio, M. fossilis, E. lucius, Salmo trutta L. morpha fario and S. gairdneri Rich. has shown that in the species under comparison the relative durations of the period of synchronous cleavage divisions are similar, whereas those of the period of asynchronous cleavage divisions differ. The relative durations were found to be similar for the period between the onset of gastrulation and the stage of 10 pairs of somites in M. fossilis, E. lucius and 2 species of Salmo. Differences were revealed in the relative duration of the period of epiboly; the average relative rate of the movement of blastoderm cells toward the vegetative pole is similar in the species with the eggs of small size (C. carpio, M. fossilis, Coregonus peled) and increases with the egg size. The temporal relationships between the embryonic periods under study in the species in question and possible mechanism which determine these relationships are considered with respect to the data on egg structure, as well as on the stage when the isolated blastoderm acquires the capacity of differentiation in vitro.  相似文献   

2.
A major question in the analysis of teleost epiboly is the fateof the yolk cytoplasmic layer. It diminishes during epibolyand eventually disappears at the completion of epiboly. Thispaper is concerned with the fate of the surface of the yolkcytoplasmic layer during epiboly. When gastrulae during epibolyare bathed in lucifer yellow (CH) and then observed with fluorescentmicroscopy or bathed in ferritin and then fixed and observedwith TEM, a thin circumferential ring of endocytic vesiclesis observed, confined to the external yolk syncytial layer justperipheral to the advancing margin of the blastoderm. Even thoughthe entire egg is immersed in the marker, endocytosis is confinedto this limited region. More precisely, this endocytosis occursonly within the region of the external yolk syncytial layer,where the surface is most folded. The endocytic vesicles thusformed move downward and settle on the surface of the membraneseparating the yolk from the cytoplasm in the yolk syncytiallayer. They do not join the surface of the internal yolk syncytiallayer; hence they do not contribute to its expansion. Priorto the onset of epiboly there is no such endocytosis at thesurface of the egg. Since this endocytosis occurs only duringepiboly and only at the surface of the external yolk syncytiallayer just peripheral to the advancing margin of the blastoderm,and in the absence of large molecules in the medium, we concludethat it is programmed. We, therefore, present this as a caseof programmed internalization of cell surface serving as themorphogenetic mechanism responsible for the disappearance ofthe surface of the yolk cytoplasmic layer during gastrulationof the teleost Fundulus heteroclitus  相似文献   

3.
The present report describes Lucifer Yellow (LY) transfer between the syncytial layer of the yolk cell (YSL) and blastodermal cells during epiboly in the teleost fish Barbus conchonius. The fate of a group of labeled cells is described until germ layer formation. At the onset of epiboly, LY seems to be transferred from the YSL to all blastodermal cells. Between 10% and 40% epiboly, dye-coupling appears to be restricted to the marginal region. Within 60 min individually labeled cells are distributed among unlabeled cells within the blastoderm. Between 40% and 60% epiboly, we observed a ring-shaped group of labeled cells, which probably have involuted during early gastrulation. Consequently, this cell group may correlate with the leading edge of the hypoblast layer within the germ ring. At 60% epiboly and later, the blastodermal cells are dye-uncoupled from the YSL. A gradual translocation of the ring-shaped hypoblast towards a dorsally located bar-like structure is observed between 50% and 100% epiboly. At 100% epiboly, fluorescent cells were located in contact with the YSL within the embryo proper, with the brightest fluorescence in the future head region. The translocation is due to dorsalwards convergent cell movements during the gastrulation process. The appearance of the hypoblast as a dye-coupled cell layer may correlate with some restriction in cell fate since the hypoblast differs in fate from the epiblast.  相似文献   

4.
An analysis of carp blastoderm development was carried out in culture after isolation from the yolk cell and its yolk syncytial layer (YSL). The blastoderms were separated from the YSL at four different stages of embryogenesis: the blastula, early epiboly, early gastrula and late gastrula stages. Absence of the YSL in explants was checked by scanning electron microscopy. From observations of living embryos and histological examination of tissues which were formed in explants from all stages studied it was observed that they contained notochordal, muscle and neural tissue as signs of dorsal types of differentiation. Only in explants from the early and late gastrula stages were histotypical tissues organized in an embryonic-like body pattern. The data indicate that mesoderm differentiation in fish embryos is independent from the YSL, contrary to normal pattern formation which needs the presence of the YSL before the onset of gastrulation.  相似文献   

5.
Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.  相似文献   

6.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

7.
This paper summarizes evidence for the following picture ofFundulus epiboly, with an eye toward laying groundwork for futureinvestigation. The major force in epiboly is the yolk syncytiallayer (YSL). Prior to epiboly, it spreads well beyond the borderof the blastoderm to form the wide external YSL (E-YSL). Thishas contractile properties, which, however, are restrained priorto epiboly by the attached enveloping layer (EVL) of the blastoderm.Epiboly begins when the E-YSL contracts and narrows, throwingits surface into folds and pulling the internal YSL (I-YSL)and the attached EVL vegetally. When the narrowing of the E-YSLhas ceased, it is postulated that its contractility continuesas a circumferential wave of vegetally directed contractionthat moves over the yolk toward the vegetal pole, dragging theI-YSL and the attached EVL (and blastoderm) with it. The mostobvious visible manifestation of this wave is a marked marginalconstriction, where the YSL joins the yolk cytoplasmic layer(YCL). As this contractile wave passes over the yolk, cytoplasmfrom the YCL mingles with that of the advancing E-YSL, and YCLsurface adds to the already highly convoluted surface of theE-YSL. This folded surface is the site of a thin, highly localizedband of rapid endocytosis that encircles the egg and passesover it with the E-YSL in a wave throughout epiboly. This internalization,which is receptor independent and therefore somehow programmed,accompanies the putative contractile wave, and accounts forthe disappearance of the surface of the YCL. Since the YCL surfacestands in the way of the advancing YSL, its internalizationis part of the mechanism of epiboly. As the I-YSL expands inresponse to this marginal pull, its abundant microvilli graduallydisappear, providing surface for its epiboly. The firmly attachedEVL likewise expands toward the vegetal pole in response tothe pull of the autonomously expanding YSL. As epiboly of theEVL progresses, it adjusts to the geometric problems posed bya sheet expanding over a sphere by active cell rearrangementwithin the cell monolayer. Thus, epiboly of the EVL has an activeas well as a passive component. Deep cells are not causallyinvolved in epiboly, but move about in coordinated ways in theconstantly increasing space between the I-YSL and the EVL providedby epiboly and form the germ ring and the embryonic shield andeventually the embryo proper. An attempt is made to pull allof this together, and more, in order to achieve as comprehensivean understanding of epiboly as present evidence will allow.  相似文献   

8.
Permeabilized eggs of Drosophila melanogaster were incubated in tritiated uridine, valine, and phenylalanine. The uptake and incorporation into TCA-insoluble material were measured by scintillation counting. There was very little incorporation of uridine before the blastoderm stage. At the blastoderm stage, the egg took up 2.4 pmoles/hr of uridine and incorporated 0.13 pmoles into RNA (assuming no dilution of specific activity of the precursor). The uptake of amino acids varied with the age of the embryo; virgin eggs synthesized about as much protein as fertilized eggs. Autoradiography of eggs incubated in uridine showed a lack of RNA synthesis in nuclei until the start of the blastoderm formation. The small amount of uridine incorporation before this stage was due to mitochondria. Incorporation of amino acids was uniform in the cytoplasm until the blastoderm; there was no incorporation by yolk granules. Regional difference in labeling appeared during gastrulation. The pole cells did not form RNA during the blastoderm stage, formation started during gastrulation. Protein labeling of the pole cells, on the contrary, was very strong in the blastoderm and early gastrula. These results indicate that the expression of zygotic genome before the blastoderm stage is unlikely.  相似文献   

9.
One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.  相似文献   

10.
The eggs of African mouth-brooders are of unusual size and shape. Studying their development may help to more clearly understand epiboly, gastrulation, and the relation between enveloping layer (periderm) and epidermis. When epiboly has progressed over just one fifth of the yolk mass, the germ ring and embryonic shield are already well established. Behind the germ ring very few deep cells are present at this early stage of epiboly, except in the embryonic shield. When the blastodisc covers the animal half of the yolk mass, the future body is already well established with notochord, somites and developing neural keel. Apart from these structures, no deep cells can be detected between enveloping layer and yolk surface; not even a germ ring remains behind the advancing edge of the enveloping layer. Epiboly over the greater part of the yolk is achieved only by the enveloping layer and the yolk syncytial layer. As the margin of the enveloping layer begins to reduce its circumference when closing around the vegetal pole, groups of cells in the advancing edge become spindle-shaped, with a single cell in between of each of these groups broadening along the edge. The enveloping layer (called periderm after epiboly) remains intact until after hatching, when, together with the underlying ectoderm, it forms the double-layered skin of the larval fish. Thereafter, cells deriving from the subperipheral ectoderm gradually replace the decaying periderm cells to form the final epidermis. Thus, in the cichlids studied, the enveloping layer alone forms the yolk sac to begin with, and it covers the larval body until some days after hatching.  相似文献   

11.
We describe a set of observations on developing zebrafish embryos and discuss the main conclusions they allow:(1) the embryonic dorso-ventral polarity axis is morphologically distinguishable prior to the onset of gastrulation; and (2) the involution of deep layer cells starts on the prospective dorsal side of the embryo. An asymmetry can be distinguished in the organization of the blastomeres in the zebrafish blastula at the 30% epiboly stage, in that one sector of the blastoderm is thicker than the other. Dye-labelling experiments with DiI and DiO and histological analysis allow us to conclude that the embryonic shield will form on the thinner side of the blastoderm. Therefore, this side corresponds to the prospective dorsal side of the embryo. Simultaneous injections of dyes on the thinner side of the blastoderm and on the opposite side show that involution of deep layer cells during gastrulation starts at the site at which the embryonic shield will form and extends from here to the prospective ventral regions of the germ ring.  相似文献   

12.
We have identified the Yes kinase in zebrafish eggs and investigated its role in development of the zebrafish embryo. In situ hybridization as well as immunofluorescence techniques demonstrated that Yes kinase is maternally expressed and is localized to the cortical region of the unfertilized egg. Fertilization resulted in concentration of Yes kinase to the blastodisc where it continued to be localized to the blastoderm cells through cleavage, gastrulation, and later development. Yes kinase activity was found to decrease abruptly at fertilization, then increase progressively during epiboly, and was maintained at high levels throughout gastrulation. The role of Yes kinase in development was tested by treating embryos with chemical protein tyrosine kinase (PTK) inhibitors such as 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) and by injection of antisense morpholinos. Both treatments resulted in the arrest of development at the beginning of the epiboly. Co-immunoprecipitation studies demonstrated that Yes kinase participates in a stable complex with focal adhesion kinase (FAK), which is phosphorylated in vitro. These results demonstrate that Yes kinase plays an important role in epiboly and indicate that Yes kinase participates in signaling by focal adhesion kinase during early development.  相似文献   

13.
Examination of normal shaping dynamics and immediate and long-term responses to blastoderm cutting in zebrafish and loach embryos prior to the onset of gastrulation and during the course of epiboly revealed that anteroposterior (AP) and dorsoventral (DV) polarity formation is connected with shaping of the blastoderm circumferential region, which stretches along and shrinks across its movement axes and originates the non-isotropic fields of tensile stresses. Based on data from cutting experiments and quantitative morphology, we reconstructed the movement-shaping patterns of epiboly and embryonic shield formation. We revealed that AP and DV axes originate as a mass cell movement subject to the movement-shaping equivalence principle, which means the spatial series of differently shaped areas corresponding to the time succession of the same area shaping. Maintenance of the main body axes in orthogonal orientation depends on the mechanical equilibrium principle allowing for converting shape asymmetry into that of tensile stresses and vice versa. The causal relationship between the main movement-shaping axes and that of embryonic polarity was proved in cutting experiments in which the DV axis direction was subject to rearrangement so as to adjust to the new direction of mass cell movement axes induced by healing the wound in the blastoderm circumferential region.  相似文献   

14.
The degree of differentiation of axial structures (notochord, neuroectoderm, and somites) in 24-hour explants (a total of 380) of the loach embryonic blastoderm was determined on histological sections according to a developed scale of estimates. Before the beginning of epiboly, axial structures were formed only from fragments of the dorsal sector of the blastoderm marginal zone. Its other sectors acquired the capacity of forming axial structure only with the beginning of epiboly, as the germ ring was formed in the marginal zone, unlike the cells outside the germ ring. The degree of differentiation of axial structures in the dorsal sector of marginal zone increased reliably with the appearance of embryonic shield, i.e. area of the convergence of cell flows. Here, statistically significant regional differences in morphogenetic potencies of the marginal zone first appeared, which corresponded to the differences in prospective significance of its materials; notochord and neuroectoderm better differentiate from the dorsal sector material, while somites better differentiate from the ventral sector material. Thus, distribution of morphogenetic potencies reflects precisely the spatial-temporal dynamics of collective movement of the blastoderm cells during the normal course of morphogenesis.  相似文献   

15.
16.
The degree of differentiation of axial structures (notochord, neuroectoderm, and somites) in 24-hour explants (a total of 380) of the loach embryonic blastoderm was determined on histological sections according to a developed scale of estimates. Before the beginning of epiboly, axial structures were formed only from fragments of the dorsal sector of the blastoderm marginal zone. Its other sectors acquired the capacity of forming axial structure only with the beginning of epiboly, as the germ ring was formed in the marginal zone, unlike the cells outside the germ ring. The degree of differentiation of axial structures in the dorsal sector of marginal zone increased reliably with the appearance of embryonic shield, i.e. area of the convergence of cell flows. Here, statistically significant regional differences in morphogenetic potencies of the marginal zone first appeared, which corresponded to the differences in prospective significance of its materials; notochord and neuroectoderm better differentiate from the dorsal sector material, while somites better differentiate from the ventral sector material. Thus, distribution of morphogenetic potencies reflects precisely the spatial-temporal dynamics of collective movement of the blastoderm cells during the normal course of morphogenesis.  相似文献   

17.
The embryonic surface of the teleost, Oryzias latipes , was observed by scanning electron microscopy (SEM) to examine the last phase of epiboly or blastopore closure. The surface of the external yolk syncytial layer (E–YSL), a surface cytoplasmic layer encompassing the yolk sphere situated beyond the blastoderm, was highly undulated with surface folds of random orientation throughout most of epiboly (st. 14–20). Scattered microvilli were observed on the surface of the margin of the yolk plug in st. 18–20. The microvilli, 1 to 6 μm in length, were projected in a bunch at the end of blastopore closure (st. 20–21). The appearance of these microvilli in the last phase of epiboly is discussed with respect to the mechanism of epiboly.  相似文献   

18.
19.
Precise tissue remodeling during development is essential for shaping embryos and optimal organ function. Epiboly is an early gastrulation event by which the blastoderm expands around the yolk to engulf it. Three different layers are involved in this process, an epithelial layer (the enveloping layer, EVL), the embryo proper, constituted by the deep cells (DCs), and the yolk cell. Although teleost epiboly has been studied for many years, a clear understanding of its mechanics was still missing. Here we present new information on the cellular, molecular and mechanical elements involved in epiboly that, together with some other recent data and upon comparison with previous biomechanical models, lets conclude that the expansion of the epithelia is passive and driven by active cortical contraction and membrane removal in the adjacent layer, the External Yolk Syncytial Layer (E-YSL). The isotropic actomyosin contraction of the E-YSL cortex generates an anisotropic stress pattern and a directional net movement consequence of the differences in the deformation response of the 2 opposites adjacent domains (EVL and the Yolk Cytoplasmic Layer - YCL). Contractility is accompanied by the local formation of membrane folds and its removal by Rab5ab dependent macropinocytosis. The increase in area of the epithelia during the expansion is achieved by cell-shape changes (flattening) responding to spherical geometrical cues. The counterbalance between the geometry of the embryo and forces dissipation among different elements is therefore essential for epiboly global coordination.  相似文献   

20.
Summary The present report firstly describes a pilot study in which, during early development of embryos of the common carp, Cyprinus carpio, the cellular adhesion to fibronectin (FN) was blocked by administration of GRGDS peptide (which binds to the FN-receptor). As this treatment resulted in developmental aberrations, suggesting a functional role for FN, the major part of the work was focussed on the distribution of reactivity of anti-FN antibodies during epiboly and gastrulation. GRGDS treatment had a concentration dependent effect on development. Incubation of embryos in 1.5 mg/ml from the 32-cell stage onwards caused a retardation of epiboly, which did not proceed beyond 60%. The embryos did not show involution, as was confirmed by histological study. These preliminary results suggest that FN is involved in both epiboly and gastrulation of carp embryos. During cleavage, no specific extracellular binding of anti-FN antiserum could be observed. However, binding to a number of cell membranes took place from early epiboly onwards. After the onset of gastrulation, we observed a gradually increasing number of the deepest epiblast cells, showing immunostaining on part of their surface, facing the yolk syncytial layer (YSL) or the involuted cells. During early epiboly, anti-FN binding was restricted to areas in front of the migratory hypoblast cells. Later on, binding was found at the border of hypoblast and epiblast cells. At 100% epiboly, some contact areas of epiblast and hypoblast showed a discontinuous lining of reactivity, whilst other areas appeared devoid of anti-FN binding sites. The results indicate that FN is involved in the migration and guidance of hypoblast cells during gastrulation in carp. Correspondence to: P. Gevers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号