首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Blinding young adult female hamsters was followed by functional involution of the ovaries and uteri and by the cessation of cyclic vaginal phenomena. Light deprivation was also accompanied by elevated plasma and pituitary levels of luteinizing hormone and depressed levels of prolactin in both the blood and the pituitary gland. Only one of 15 blinded hamsters became pregnant when they were exposed to fertile males for 30 days. Both pinealectomy or chronic melatonin treatment (1 mg melatonin implanted subcutaneously per week in beeswax) prevented the changes in the reproductive organs and in pituitary hormone levels attendant on light-deprivation. Both treatment also returned vaginal cycles to normal and restored plasma prolactin titers. Unlike hamsters that were blinded only, light deprived hamsters that were either pinealectomized or melatonin treated were capable of reproducing when they were caged with fertile males. The reproductive capability (i.e., percent of animals that become pregnant and the sizes of their litters) of these animals was equivalent to that of the untreated control hamsters. This is the first report that chronic melatonin treatment restores fertility in blinded female hamsters.Supported by Grant GB-43233X from the National Science Foundation  相似文献   

2.
Adult female hamsters were injected each afternoon for 9 weeks with 2.5, 15 or 25 micrograms of melatonin or 6-chloromelatonin (CM). Each drug resulted in a significant dose-related depression in uterine, ovarian and anterior pituitary gland weights. Additionally, plasma and pituitary concentrations of prolactin fell with increasing dose of either indole whereas pituitary levels of LH and FSH were positively correlated with dose. There was no difference in effectiveness between the two drugs. Adult male hamsters treated for 10 weeks with daily afternoon injections of melatonin and a blank beeswax pellet had depressed testicular and accessory organ weights and plasma and pituitary concentrations of prolactin. Implantation of a 1 mg melatonin or CM beeswax pellet in hamsters concurrently receiving daily afternoon injections of melatonin prevented the organ weight and hormonal changes, except for plasma prolactin. Adult male hamsters treated for 10 weeks with daily afternoon injections of CM and a blank beeswax pellet had depressed reproductive organ weights and pituitary and plasma concentrations of prolactin; this depression in hormonal values and organ weights was totally prevented if the CM-injected hamsters were also bearing a beeswax-melatonin pellet. In conclusion, 6-chloromelatonin is as effective as melatonin with regards to antigonadotrophic and counter-antigonadotrophic effects in male and female Syrian hamsters.  相似文献   

3.
Blinding adult male golden hamsters was followed by atrophy, within 12 weeks, of the testes and accessory sex organs (seminal vesicles and coagulating glands) and by a significant reduction in pituitary prolactin levels. In experiment 1 blind hamsters received subcutaneously implanted melatonin-beeswax (1:24 mg) pellets at the following intervals: once per week, per 2, 3, 4, 6 weeks, or only one pellet during the 12-week experimental period. The melatonin-beeswax pellets, regardless of the frequency of implantation, overcame completely the inhibitory effects of blinding on reproduction and nearly completely the depressant action of light deprivation on pituitary prolactin levels. In the second study the melatonin-beeswax pellets were implanted subcutaneously into blind hamsters every 2 weeks. The pellets contained either 1 mg, 500, 100, 50, or 1 mug melatonin. With the exception of the 1-mug dosage, melatonin again negated almost totally the inhibitory action of darkness on the gonads and accessory organs and also, for the most part, prevented the drop in pituitary prolactin levels. Based on these studies, when melatonin is chronically administered subcutaneously in a beeswax pellet the minimal dosage of melatonin required to counteract the inhibitory effect of darkness on reproduction seems to be less than 3.6 mug/day. The effects of chronic melatonin treatment are similar to those of pinealectomy.  相似文献   

4.
Juvenile hamsters were injected daily with melatonin and some were also given transplants of 2 pituitaries under the kidney capsule. Weights of the testes and the accessory reproductive glands were reduced after 8 and after 12 weeks of melatonin treatment, but remained unaltered in animals treated with ectopic pituitary transplants. Levels of testicular LH/hCG receptors were significantly reduced by daily melatonin injections for 8 and 12 weeks. The presence of pituitary transplants in melatonin-injected hamsters prevented these reductions, and increased LH/hCG receptors above control levels. These changes in testicular LH/hCG receptors were closely related to alterations in serum prolactin concentration induced by melatonin and pituitary transplants. After 8, but not after 12 weeks of treatment, testicular prolactin receptor levels were reduced by melatonin and maintained by the presence of pituitary transplants. We conclude that: juvenile male hamsters become sensitive to the effects of daily melatonin injections when they reach maturity; daily melatonin injections can reduce the levels of testicular LH/hCG and prolactin receptors; and the effects of melatonin on LH/hCG and prolactin receptors are probably due to suppression of endogenous prolactin release.  相似文献   

5.
Blinding adult male golden hamsters led to involution of the testes and accessory sex organs (seminal vesicles and coagulating glands) and to a regression in pituitary prolactin levels within 8 weeks. The subcutaneous implantation of either melatonin or 6-hydroxymelatonin (1 mg/wk in beeswax) prevented the atrophy of the reproductive organs and the decrease in the stores of pituitary prolactin. Two other indoles, N-acetylserotonin and 5-hydroxytryptophol, failed to counteract the reproductive effects of blinding. Both melatonin and 6-hydroxymelatonin significantly elevated plasma LH titers.  相似文献   

6.
Since melatonin injections administered near the end of the daily photoperiod influence both gonadal and thyroid hormones in the female hamster, the present study was designed to compare the effects of melatonin and hypothyroidism on the reproductive system and to determine whether thyroid status influenced the action of melatonin on the regulation of the hormones of reproduction. The effects of daily melatonin injections were determined in control hamsters, in hamsters rendered hypothyroid with thiourea, and in hypothyroid hamsters receiving thyroxin (T4) hormone replacement. As previously reported, melatonin injections disrupted estrous cyclicity, disrupted the normal pattern of gonadotropin secretion, and resulted in atrophy of the uterus and vagina. These changes coincided with depressed serum and pituitary prolactin (PRL), and depressed levels of estradiol. The effects of melatonin on uterus, vagina, ovary, and on gonadotropin levels were not prevented by T4 replacement, with the exception of a melatonin-induced increase in serum follicle-stimulating hormone (FSH). This suggested that the cessation of estrous cyclicity was not primarily a result of thyroid deficiency. Hypothyroidism, however, like melatonin, resulted in a reduced number of developing and mature follicles and corpora lutea in the ovaries, and in reduced uterine weight. It also produced follicular atresia, reduced the circulating levels of estradiol, and resulted in reduced incidence of estrus smears. T4 replacement, for 2 weeks, prevented the decline in mature follicles and corpora lutea, reduced the extent of follicular atresia, increased circulating levels of estradiol, and increased uterine weight. PRL and luteinizing hormone (LH) data also provided evidence for antagonistic effects of melatonin and T4 in female hamsters. These data raise the question whether melatonin-induced changes in circulating levels of T4 play a role in the seasonal cycles of reproductive competence in the female hamster.  相似文献   

7.
Daily late afternoon injections of melatonin (25 micrograms/day s.c.) were found to reduce the number of cells expressing estrogen receptor immunoreactivity in the medial preoptic area of ovariectomized inbred (LSH/SsLak) golden hamsters. Employing immunocytochemical analysis with the H222 monoclonal antibody to the human estrogen receptor, we examined the effects of melatonin on estrogen receptor expression in the hypothalamus, particularly the medial preoptic area, of ovariectomized virgin female hamsters. Analysis of the results showed that melatonin administration induced a 50-70% decrease in numbers of estrogen receptor-immunoreactive neurons in the medial preoptic area of ovariectomized female hamsters. Furthermore, an overall qualitative decrease in the intensity of estrogen receptor immunoreactivity was observed. In intact regularly cycling female hamsters used to monitor the efficacy of melatonin treatment, there were significant reductions in the serum levels of FSH, LH, and prolactin as measured by radioimmunoassay and in uterine and pituitary weights after 8 wk of melatonin treatment. These results suggest that melatonin may exert its anti-reproductive effects in hamsters by modulating estrogen receptor levels in medial preoptic area neurons, thus influencing steroid feedback mechanisms.  相似文献   

8.
In this present study we evaluated the ability of a recently synthesized melatonin antagonist, N-(2,4-dinitrophenyl)-5-methoxytryptamine (ML-23), to antagonize the effects of afternoon injections of melatonin on the reproductive and thyroid axes in the female Syrian hamster. Thirty-six animals were divided into four groups and treated daily for 13 weeks with an afternoon injection of melatonin (25 micrograms/injection) or saline diluent. ML-23 was given via the drinking water to both melatonin- and saline-treated groups. The experiment was continued until 78% of melatonin-treated animals exhibited acyclicity. The results show that ML-23 partially reversed the effects of melatonin on pituitary follicle-stimulating hormone concentrations but was without effect on the decreased pituitary and plasma prolactin concentrations induced by melatonin treatment. Furthermore, ML-23 antagonized the effects of melatonin on plasma thyroxine levels and significantly increased plasma triiodothyronine concentrations and the free triiodothyronine index when used in combination with melatonin. The decrease in ovarian weight and plasma estradiol, but not progesterone, obtained with melatonin treatment also was reversed by ML-23. Our data suggest that ML-23 prevents the effects of melatonin treatment on ovarian weight, pituitary follicle-stimulating hormone levels, plasma estradiol, and thyroxine concentrations in the female Syrian hamster. Since ML-23 did not prevent the effects of melatonin on pituitary weight, plasma luteinizing hormone and prolactin, and pituitary prolactin concentrations, the actions of ML-23 may involve only peripheral sites of action of melatonin. Alternatively, the dose of ML-23 may not have been optimal to prevent all of the central effects of the indoleamine.  相似文献   

9.
When blinded, golden Syrian hamsters undergo marked gonadal atrophy. This phenomenon is prevented by pinealectomy. The mechanisms involved in this pineal-mediated response were investigated through either the transplantation of pituitary homografts or treatment of blinded, male hamsters with exogenous prolactin. It was found that anterior pituitary homografts placed beneath the kidney capsule on the day of bilateral optic enucleation partially maintained testicular and accessory organ weights. Serum prolactin levels were reduced in blinded animals below that of intact controls. On the other hand, blinded hamsters bearing anterior pituitary homografts showed serum prolactin levels comparable to those of intact controls. In other experiments, the injection of either 3.2 or 6.4 I.U. of ovine prolactin/hamster/ day for a period up to seven weeks partially inhibited the atrophy of testes and accessory organ weights in blinded hamsters. These data suggest a possible role for prolactin in the pineal-mediated atrophic response to light deprivation.  相似文献   

10.
Pinealectomy in the female golden Syrian hamster is not always completely effective in preventing the suppressive effects of long-term light deprivation due to blinding on pituitary prolactin (PRL) cell activity. We examined this curious phenomenon by measuring pituitary PRL mRNA levels, PRL synthesis, and radioimmunoassayable PRL, and correlating these changes with the status of estrous cyclicity. As expected, 12 weeks of light deprivation resulted in loss of estrous cyclicity and a greater than 90% decline in all indices of pituitary PRL cell activity, compared with intact cycling controls. Pinealectomy prevented only 40-50% of this decline. However, if noncycling light-deprived pinealectomized animals were excluded, pinealectomy was completely effective, i.e., cycling intact control animals were no different than cycling blind-pinealectomized. We conclude that the inability of pinealectomy to completely prevent the decline in prolactin cell activity seen after blinding is due to the loss of estrous cyclicity in some blind-pinealectomized females, with the attendant loss of the prolactin-stimulating hormone estrogen.  相似文献   

11.
In the golden hamster light deprivation has been shown to induce gonadal regression and reduction of pituitary and plasma levels of prolactin (PRL). In the present study we examined changes in morphology and population ratios of three types of PRL cells 8 weeks after light deprivation, by means of blinding or exposure of hamsters to continuous darkness. In the pituitary of intact hamsters of either sex, which were entrained to a 14-h light: 10-h dark cycle, Type C cells with large secretory granules were the most numerous and Type A with smaller granules the least. After light deprivation the pituitary was found to contain remarkably atrophic PRL cells and showed a profound change in population ratio of PRL cell types, i.e., Type A cells prevailed over the other two types. Pituitary glands from light-deprived and concurrently pinealectomized hamsters exhibited structures and a population ratio of three types of PRL cells similar to those from intact animals. It is suggested that small-granule-containing PRL cells represent an inactive stage of PRL cells, whereas medium- and large-granule-containing cells are functionally active cells. The atrophy of PRL cells can account for the decreased pituitary level of PRL in light-deprived hamsters reported previously.  相似文献   

12.
The Harderian glands in Syrian hamsters exhibit a striking sexual dimorphism. Male Harderian glands show two cell types and low levels of porphyrins and melatonin. Of the enzymes involved in the synthesis of melatonin, N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) show high and low activity levels, respectively. Female Harderian glands show but one cell type and have high porphyrin and melatonin levels, low NAT activity, and high HIOMT activity. In castrated males, the Harderian glands exhibit a female pattern of morphology, porphyrin levels, and indoleamine metabolism. In an attempt to determine whether prolactin in involved in this sexually dimorphic response of the Harderian glands, intact and castrated male and intact female hamsters were injected daily with 500 micrograms of bromocriptine, a dopamine agonist. Bromocriptine led to reduced serum prolactin levels in all groups. It had no apparent effect on the Harderian glands of intact males. In contrast, in castrated males bromocriptine prevented the postcastrational rise in porphyrin levels but had no effect on NAT or HIOMT activities. In females, bromocriptine treatment had no effect on porphyrin concentrations or HIOMT activity; it led to a statistically significant increase in NAT activity. We propose that testosterone inhibits Harderian porphyrin synthesis while dopamine or prolactin stimulates it.  相似文献   

13.
The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.  相似文献   

14.
Pituitary prolactin (PRL) cell activity (i.e. PRL messenger ribonucleic acid [mRNA] levels, PRL synthesis, and radioimmunoassayable [RIA]-PRL), and serum RIA-PRL were measured in female golden Syrian hamsters that were (1) light-deprived and then ovariectomized before loss of estrous cyclicity, (2) light-deprived but not yet acyclic, and (3) light-deprived and ovariectomized simultaneously. The results indicate that light-deprivation can decrease PRL cell activity in ovariectomized hamsters but not in animals that continue to cycle. Thus, estrous cyclicity can be said to largely protect PRL cell activity from depressions due to light deprivation. After acyclicity/ovariectomy, however, PRL cell activity is no longer protected and light-deprivation leads to large depressions in PRL mRNA levels, PRL synthesis, and RIA-PRL beyond that caused by acyclicity/ovariectomy alone. As seen in previous studies of total light-deprivation in nonovariectomized female hamsters, we found that removing the pineal gland in conjunction with light-deprivation in ovariectomized hamsters can completely, partially, or fail to restore various measures of PRL cell activity.  相似文献   

15.
The impact of norepinephrine (NE) and its metabolite, 3-methoxy4-hydroxyphenylglycol (MHPG), on circulating prolactin (PRL) was evaluated in the paraventricular region of the hypothalamus as a function of photoperiod and integrity of the pineal gland. In Experiment 1, whole tissue content of NE and MHPG was assessed in male and female hamsters that had been pinealectomized or sham-pinealectomized and exposed to long or short photoperiods for 5 weeks. The results revealed a marginal effect of photoperiod in males, but no overall effects of surgery. Because analysis of whole tissue content can be complicated by concurrent changes in synthesis and storage rates, Experiment 2 was conducted using microdialysis to assess extracellular levels of NE and MHPG in female hamsters. Pinealectomy completely prevented the short-day-induced suppression of luteinizing hormone, but it only partially prevented the effects of short days on PRL. Furthermore, both NE and MHPG levels were significantly elevated in short-day-exposed pinealectomized and sham-operated animals. These results suggest that NE release within the paraventricular nucleus inhibits the circulating PRL levels and is one mechanism by which direct photic information can influence the neuroendocrine axis independently of the pineal melatonin signal.  相似文献   

16.
In Siberian hamsters (Phodopus sungorus), short days suppress reproductive function and lymphocyte proliferation. To determine whether melatonin influences cell-mediated immunity through a direct action on lymphocyte proliferation, in vitro responsiveness to mitogens and melatonin was assessed in systemic and splenic lymphocytes from adult female Siberian hamsters housed in either long or short days for 13 weeks. Short days provoked reproductive regression and reduced lymphocyte proliferation. Physiological concentrations of melatonin (50 pg/ml) inhibited in vitro proliferation of circulating lymphocytes, whereas higher concentrations (> or = 500 pg/ml) were required to inhibit proliferation of splenic lymphocytes. Immunomodulatory effects of melatonin were restricted to lymphocytes from long-day hamsters-in vitro melatonin had no effect on circulating or splenic lymphocytes from females in short days. Responsiveness to melatonin in short-day lymphocytes may be restrained by the already expanded nightly pattern of melatonin secretion in short days. These data support the hypothesis that melatonin acts directly on lymphocytes from long-day hamsters to suppress blastogenesis.  相似文献   

17.
Short day lengths induce testicular regression in seasonally breeding Syrian hamsters. To test whether the ventromedial hypothalamus is necessary to maintain reproductive quiescence once testicular regression has been achieved, photoregressed male hamsters were subjected to lesions of the ventromedial hypothalamus (VMHx), pinealectomy (Pinx), or sham operation (Sham). VMHx hamsters underwent accelerated gonadal recrudescence compared to Pinx and Sham hamsters. Recovery of prolactin concentrations (PRL) to values characteristic of long-day hamsters was hastened in the VMHx animals compared to Sham hamsters. Concentrations of follicle stimulating hormone (FSH) increased prematurely in both the VMHx and Pinx animals, beginning a few weeks after surgery. By the time the gonads had undergone recrudescence and the hamsters were refractory to melatonin, PRL and FSH concentrations had returned to baseline long-day values in all groups; there was no evidence of hypersecretion of either hormone in any of the animals with lesions. Melatonin concentrations of VMHx hamsters did not differ from those of sham-operated animals, but because only a single determination was made, it remains possible that VMH damage altered the duration of nightly melatonin secretion. An intact VMH appears to be essential for the continued maintenance of reproductive suppression induced by exposure to short day lengths; these and earlier findings suggest that the VMH-dorsomedial hypothalamic complex mediates regression of the reproductive apparatus during decreasing day lengths of late summer and early autumn and also is necessary to sustain regression during the winter months.  相似文献   

18.
NAT, HIOMT and melatonin are described in the extra-orbital lacrimal glands. The extra-orbital lacrimal glands of female Syrian hamsters contain higher NAT activity and melatonin levels than those in male glands, while male glands have higher HIOMT activity. Castration did not change melatonin in the lacrimal glands, although NAT and HIOMT activities were altered. The exposure of female hamsters to light in the morning (0600h) was associated with a reduction in both NAT activity and melatonin levels. Porphyrins were not detected in the lacrimal glands of either male or female hamsters.  相似文献   

19.
The onset of sexual differences in the metabolism of porphyrins and melatonin in the Harderian glands of Syrian hamsters was studied. Three weeks after birth, the porphyrin concentrations were already higher in glands of females than in those of males. Castration of 22-day-old male hamsters led to an increase in Harderian porphyrin concentrations, although the levels of intact females were not reached. The administration of testosterone to 22-day-old female hamsters resulted in a marked decrease in porphyrin concentrations. Study of the development of sexual differences in the enzymes involved in melatonin synthesis, N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) indicated that not all the sexual differences observed in these glands begin at the same time. Thus, while differences in NAT activity were detected after the age of 3 weeks, male-female differences in HIOMT activity were only observed after 7 weeks. Castration of prepubertal male hamsters lowered NAT but not HIOMT activities. The administration of testosterone to prepubertal female hamsters led to male activity levels in both enzymes. Although circulating androgens seem to have a crucial role in maintaining sexual differences, other hormones including those from the pituitary and thyroid glands are probably also important for generating these sexual differences.  相似文献   

20.
To determine if exogenously administered alpha-melanocyte stimulating hormone (alpha-MSH) affects nighttime pineal N-acetyltransferase activity, pineal levels of 5-hydroxytryptophan, serotonin and melatonin, and plasma prolactin levels, adult male hamsters were injected at 1900 hr (lights out 2000-0600 hr) with two doses of the peptide and killed at 0300 hr. The low dose of alpha-MSH (200 ng) produced a significant fall in pineal serotonin, pineal NAT activity and plasma prolactin values. The high dose of the peptide (20 micrograms) increased circulating prolactin titers and pineal serotonin levels and caused a concomitant decrease in pineal melatonin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号