首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The isolation of silver-resistant, silver-accumulating bacteria is reported. Following the screening of a number of environmental sources, silver-resistant Enterobacteriaceae were isolated from both sewage and photographic processing effluent. The level of resistance to silver and other heavy metals was determined for a selection of these isolates and, together with preliminary accumulation data derived from batch culture studies, one isolate, a strain of Citrobacter intermedius, was selected for further examination. The effect of silver concentration on batch culture growth of this organism was also investigated.  相似文献   

2.
Silver-resistant Enterobacteriaceae from hospital patients   总被引:5,自引:0,他引:5  
The inclusion of agar medium containing 0.5 mM AgNO3 in the hospital laboratory replicating system for routine antibiotic-susceptibility determinations resulted in identification of species of Enterobacteriaceae (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Proteus mirabilis, and Citrobacter freundii) with silver resistance. Since the study began in October, 1975, 11 in-hospital patients receiving silver sulfadiazine for burn wound prophylaxis have yielded silver-resistant bacteria from their infected burns. During this treatment routine burn-site cultures from these patients yielded 230 isolates of Enterobacteriaceae, including 211 which were sulfonamide-resistant, 97 of which were also silver-resistant, and 38 of which were untested for silver resistance. Seven silver-resistant but sulfonamide-sensitive isolates were incidentally recovered from respiratory specimens from four nonburn patients with silver tracheostomy tubes, one silver-resistant sulfonamide-sensitive isolate was recovered from a small infected burn on the foot of an Emergency Room patient. Previous treatment of this burn was unknown. Representative AgNO3-resistant E. coli isolates from four patients were serologically untypable. Serotyping of representative isolates of K. pneumoniae showed a diversity of types except from two patients who had been in the same ward at the same time.  相似文献   

3.
Silver resistance was studied in a silver-resistant Pseudomonas stutzeri AG259 strain and compared to a silver-sensitive P. stutzeri JM303 strain. Silver resistance was not due to silver complexation to intracellular polyphosphate or the presence of low molecular weight metal-binding protein(s). Both the silver-resistant and silver-sensitive P. stutzeri strains produced H2S, with the silver-resistant AG259 strain producing lower amounts of H2S than the silver-sensitive JM303 strain. However, intracellular acid-labile sulfide levels were generally higher in the silver-resistant P. stutzeri AG259 strain. Silver resistance may be due to formation of silver-sulfide complexes in the silver-resistant P. stutzeri AG259 strain.  相似文献   

4.
Metal accumulation by a silver-resistant Pseudomonas stutzeri AG259 strain and a Streptomyces albus strain was investigated in a mixed metal solution of silver, copper, lead and zinc. The location of silver, lead and copper on cells was determined by transmission electron microscopy coupled with an X-ray analysis system. In P. stutzeri cells silver was detected as dense deposits on the cells. Copper and lead were distributed over the cells. S. albus accumulated these metals only on part of cells with a higher concentration per cell than in P. stutzeri.  相似文献   

5.
A silver-resistant mutant ofKlebsiella pneumoniae B-5 was produced by passaging in nutrient broth containing graded concentrations of silver nitrate up to 150 ppm. The development of silver resistance in the strain resulted in rough colonies, decrease in cell size, carbohydrate content and change in klebocin pattern. The virulence of the AgR strain as checked by the burn wound model decreased as the mutant could not establish itself in the skin and spleen of the animals and the organism was cleared more efficiently by human lymphocytes than the parent AgS strain.  相似文献   

6.
A silver-resistant strain of Pseudomonas stutzeri was isolated from a silver mine. It harbored three plasmids, the largest of which (pKK1; molecular weight, 49.4 X 10(6)) specified silver resistance. Plasmid pKK1 was apparently nonconjugative but could be transferred to Pseudomonas putida by mobilization with plasmid R68.45.  相似文献   

7.
Germanium is an inert metal with no known biological function in prokaryotic or eukaryotic organisms. Its toxicity is low compared to that of silver. Germanium is accumulated in certain bacterial strains by either energy-independent passive binding or an energy-dependent mechanism. Little is known about the molecular aspects of silver resistance, toxicity, and accumulation in bacterial strains. This is surprising because silver has been used as an antimicrobial agent in the medical field for centuries. It is likely that silver ions are excluded (resulting in decreased silver accumulation) from certain bacterial strains or immobilized intracellularly to prevent toxic effects from being exerted. These mechanisms of silver resistance have not been fully elucidated. This review examines the toxicity and accumulation of germanium and silver in selected microbial species. In addition, resistance mechanisms to these biologically nonessential metals is discussed, with more emphasis placed on silver-resistant bacteria due to the knowledge available.  相似文献   

8.
Su HL  Lin SH  Wei JC  Pao IC  Chiao SH  Huang CC  Lin SZ  Lin JJ 《PloS one》2011,6(6):e21125
We develop a novel nanohybrid showing a strong antibacterial activity on all of the tested pathogens, including methicillin-resistant Staphylococcus auerus and silver-resistant E. coli. The nanohybrid consists of silver nanoparticles (AgNPs) supported on 1 nm-thick silicate platelets (NSPs). The AgNP/NSP nanohybrid enables to encapsulate bacteria and triggers death signals from the cell membrane. The geographic shape of the NSPs concentrates AgNPs but impedes their penetration into attached cells, mitigating the detrimental effect of silver ion deposition in applied tissues. Moreover, the tightly tethered AgNPs on NSP surface achieve a stronger biocidal effect than silver nitrate, but bypassing Ag(+) mechanism, on silver-resistant bacteria. This nanohybrid presents an effective and safe antimicrobial agent in a new perspective.  相似文献   

9.
There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO4 (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations.  相似文献   

10.
Heavy metal resistance in clinical isolates ofPseudomonas aeruginosa   总被引:1,自引:0,他引:1  
One hundred clinical isolates of Pseudomonas aeruginosa were checked for their sensitivity towards silver nitrate. Majority of the isolates were resistant at 20 mg/L and the resistance decreased with increasing concentration of silver nitrate, only 5% of the organisms showed resistance above 70 mg/L. These silver-resistant isolates were further checked for their resistance towards mercury and cadmium at 20 mg/L of concentration and the level of resistance was found to be 33 and 40%, respectively. A correlation between silver ion resistance and concurrent mercury and cadmium ion resistance was observed, suggesting a possible linkage between resistance towards various metal ions.  相似文献   

11.
The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by stepwise passage in culture media containing increasing concentrations of AgNO3. The published genome of E. coli ATCC 8739 contains a region showing strong homology to the Sil system genes. The role of this region in E. coli ATCC 8739 was assessed by monitoring the expression of silC upon silver stress, which resulted in a 350-fold increased expression. De novo sequencing of the whole genome of a silver resistant strain derived from E. coli ATCC 8739 revealed mutations in ORFs putative for SilR and CusR. The silver resistant strain (E. coli AgNO3R) showed constitutive expression of silC which posed a cost of fitness resulting in retarded growth. Furthermore, E. coli AgNO3R exhibited cross-resistance to ciprofloxacin and a slightly increased tolerance to ampicillin. This study demonstrates that E. coli is able to develop resistance to silver, which may pose a threat towards an effective use of silver compounds as antiseptics.  相似文献   

12.
Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pco operon of E. coli; CopR and CopS from the cop operon, which provides copper resistance to Pseudomonas syringae; and SilR and SilS from the sil locus, which provides silver ion resistance to Salmonella enterica serovar Typhimurium. The genes cusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC (ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. The cus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusC and additional downstream genes are homologous to known metal ion antiporters.  相似文献   

13.
Liu CQ  Charoechai P  Khunajakr N  Deng YM  Widodo  Dunn NW 《Gene》2002,297(1-2):241-247
A plasmid-borne copper resistance operon (lco) was identified from Lactococcus lactis subsp. lactis LL58-1. The lco operon consists of three structural genes lcoABC. The predicted products of lcoA and lcoB were homologous to chromosomally encoded prolipoprotein diacylglyceral transferases and two uncharacterized proteins respectively, and the product of lcoC is similar to several multicopper oxidases, which are generally plasmid-encoded. This genetic organization represents a new combination of genes for copper resistance in bacteria. The three genes are co-transcribed from a copper-inducible promoter, which is controlled by lcoRS encoding a response regulator and a kinase sensor. The five genes are flanked by two insertion sequences, almost identical to IS-LL6 from L. lactis. Transposon mutagenesis and subcloning analysis indicated that the three structural genes were all required for copper resistance. Copper assay results showed that the extracellular concentration of copper of L. lactis LM0230 containing the lco operon was significantly higher than that of the host strain when copper was added at concentrations from 2 to 3 mM. The results suggest that the lco operon conferred copper resistance by reducing the intracellular accumulation of copper ions in L. lactis.  相似文献   

14.
Silver nanoparticles: partial oxidation and antibacterial activities   总被引:4,自引:0,他引:4  
The physical and chemical properties of silver nanoparticles that are responsible for their antimicrobial activities have been studied with spherical silver nanoparticles (average diameter approximately 9 nm) synthesized by the borohydride reduction of Ag+ ions, in relation to their sensitivity to oxidation, activities towards silver-resistant bacteria, size-dependent activities, and dispersal in electrolytic solutions. Partially (surface) oxidized silver nanoparticles have antibacterial activities, but zero-valent nanoparticles do not. The levels of chemisorbed Ag+ that form on the particle's surface, as revealed by changes in the surface plasmon resonance absorption during oxidation and reduction, correlate well with the observed antibacterial activities. Silver nanoparticles, like Ag+ in the form of AgNO3 solution, are tolerated by the bacteria strains resistant to Ag+. The antibacterial activities of silver nanoparticles are related to their size, with the smaller particles having higher activities on the basis of equivalent silver mass content. The silver nanoparticles aggregate in media with a high electrolyte content, resulting in a loss of antibacterial activities. However, complexation with albumin can stabilize the silver nanoparticles against aggregation, leading to a retention of the antibacterial activities. Taken together, the results show that the antibacterial activities of silver nanoparticles are dependent on chemisorbed Ag+, which is readily formed owing to extreme sensitivity to oxygen. The antibacterial activities of silver nanoparticles are dependent on optimally displayed oxidized surfaces, which are present in well-dispersed suspensions.  相似文献   

15.
NADH dehydrogenase-2 (NDH-2) from Escherichia coli respiratory chain is a membrane-bound cupric-reductase encoded by ndh gene. Here, we report that the respiratory system of a ndh deficient strain suffered a faster inactivation than that of the parental strain in the presence of tert-butyl hydroperoxide due to endogenous copper. The inactivation was similar for both strains when copper concentration increased in the culture media. Furthermore, several ndh deficient mutants grew less well than the corresponding parental strains in media containing either high or low copper concentrations. A mutant strain complemented with ndh gene almost recovered the parental phenotype for growing in copper limitation or excess. Then, NDH-2 gives the bacteria advantages to diminish the susceptibility of the respiratory chain to damaging effects produced by copper and hydroperoxides and to survive in extreme copper conditions. These results suggest that NDH-2 contributes in the bacterial oxidative protection and in the copper homeostasis.  相似文献   

16.
【背景】CueR被证实在模式细菌大肠杆菌的Cue抗铜系统中参与转录调控,西瓜食酸菌(Acidovorax citrulli)中是否有类似的机制尚不清楚。【目的】鉴定西瓜食酸菌中的cueR基因、分析其编码蛋白的特点与功能,可以为进一步探究类Cue系统在西瓜食酸菌铜稳态中的作用机制奠定基础。【方法】以大肠杆菌等4个模式细菌中已经鉴定的CueR为参照,运用生物信息学手段对西瓜食酸菌的CueR (AcCueR)与大肠杆菌的EcCueR、铜绿假单胞菌的PaCueR、沙门氏菌的SeCueR、霍乱弧菌的VcCueR蛋白进行结构、性质、亚细胞定位、互作因子等特征分析;利用同源重组插入突变技术构建西瓜食酸菌FC440菌株cueR基因的突变体,并制备突变体基因功能互补菌株,比较分析各菌株抗铜性表型。【结果】西瓜食酸菌和铜绿假单胞菌的CueR序列相似性最高;5个细菌的CueR蛋白均属于HTH-MerR-SF超家族,三级结构主要由α-螺旋和无规则卷曲构成;5种蛋白结构相似;AcCueR可以与西瓜食酸菌中P型ATP酶(即CopA)、多铜氧化酶CueO产生互作,且copA启动子中存在一个与CueR结合的回文结构。在含Cu~(2+)培养基上,突变菌株FC440(?cueR)生长能力明显减弱,基因功能互补菌株FC440(?cueR-cueR)的生长能力则完全恢复。【结论】西瓜食酸菌中的cueR基因与菌的抗铜性相关,其AcCueR蛋白与大肠杆菌等菌中的CueR具有相似的结构与功能,在西瓜食酸菌中可能存在类似于大肠杆菌的Cue抗铜系统。  相似文献   

17.
Abstract From enrichment cultures in the presence of 1 mM NiCl2 200 strains of aerobic bacteria were isolated from 50 samples collected in the metal-processing industry, waste water treatment plants and from solid waste, highly polluted by heavy metals. The strains isolated were characterized with respect to their substrate spectrum and resistance to nickel, cobalt, zinc and cadmium salts and assigned to 21 groups. One representative of each group was described with respect to cell morphology. All strains were Gram-negative, non-sporing rods or cocci. The highest concentrations of nickel, cobalt, zinc, cadmium, copper, mercury, and silver allowing growth on solid media were estimated. Two strains were able to grow at 20 mM NiCl2 and CoCl2, one strain tolerated 12 mM and one 7.5 mM concentrations of these salts.
Fifteen out of 21 strains contained at least one plasmid two contained two plasmids. The plasmid sizes varied between 50 and 340 kbp, except strain 10A, which contained a miniplasmid (2.6 kbp). Attempts to cure four selected strains by exposure to mitomycin C or growth at elevated temperature failed.
By helper-assisted and unassisted conjugation the plasmids of strain 31A were shown to carry nickel and cobalt resistance determinants. Alcaligenes eutrophus strains H16 and N9A and denative of strain CH34 lacking one or both of its native metal resistance plasmids were used as recipients. Both plasmids, p TOM8 and pTOM9, of strain 31A carried resistance properties which were expressed in all recipients except. A. eutrophus H16, in which only nickel resistance was expressed.
Plasmid pTOM3 residing in strain 10A could not be transferred as such. However, transconjugants derived from helper (pULB113)-assisted matings carried co-integrates of various sizes and were resistant to nickel and cobalt.  相似文献   

18.
A sulfate-reducing bacterium, designated as strain R2, was isolated from wastewater of a ball-bearing manufacturing facility in Tomsk, Western Siberia. This isolate was resistant up to 800 mg Cu/l in the growth medium. By comparison, Cu-resistance of reference cultures of sulfate-reducing bacteria ranged from 50 to 75 mg Cu/l. Growth experiments with strain R2 showed that Cu was an essential trace element and, on one hand, enhanced growth at concentrations up to 10 mg/l but, on the other hand, the growth rate decreased and lag-period extended at copper concentrations of >50 mg/l. Phenotypic characteristics and a 1078 bp nucleotide sequence of the 16S rDNA placed strain R2 within the genus Desulfovibrio. Desulfovibrio R2 carried at least one plasmid of approximately of 23.1 kbp. A 636 bp fragment ot the pcoR gene of the pco operon that encodes Cu resistance was amplified by PCR from plasmid DNA of strain R2. The pco genes are involved in Cu-resistance in some enteric and aerobic soil bacteria. Desulfovibrio R2 is a prospective strain for bioremediation purposes and for developing a homologous system for transformation of Cu-resistance in sulfate-reducing bacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号