首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.  相似文献   

2.
Kanda Y  Nishio E  Kuroki Y  Mizuno K  Watanabe Y 《Life sciences》2001,68(17):1989-2000
Thrombin is a potent mitogen for vascular smooth muscle cells. However, the signaling pathways by which thrombin mediates its mitogenic response are not fully understood. The ERK (extracellular signal-regulated protein kinase) and JNK (c-Jun N-terminal kinase) members of the mitogen-activated protein kinase (MAPK) family are reported to be activated by thrombin. We have investigated the response to thrombin of another member of the MAPK family, p38 MAPK, which has been suggested to be activated by both stress and inflammatory stimuli in vascular smooth muscle cells. We found that thrombin induced time- and dose-dependent activation of p38 MAPK. Maximal stimulation of p38 MAPK was observed after a 10-min incubation with 1 unit ml(-1) thrombin. GF109203X, a protein kinase C inhibitor, and prolonged treatment with phorbol 12-myristate 13-acetate partially inhibited p38 MAPK activation. A tyrosine kinase inhibitor, genistein, also inhibited p38 MAPK activation in a dose-dependent manner. p38 MAPK activation was inhibited by overexpression of betaARK1ct (beta-adrenergic receptor kinase I C-terminal peptide). p38 MAPK activation was also inhibited by expression of dominant-negative Ras, not by dominant-negative Rac. We next examined the effect of a p38 MAPK inhibitor, SB203580, on thrombin-induced proliferation. SB203580 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. These results suggest that thrombin activates p38 MAPK in a manner dependent on Gbetagamma, protein kinase C, a tyrosine kinase, and Ras, that p38 MAPK has a role in thrombin-induced mitogenic response in the cells.  相似文献   

3.
4.
Purified human platelet thrombospondin was shown to activate S6 kinase in cultured vascular smooth muscle cells in a dose- (1-9 micrograms/ml) and time-dependent manner. Down regulation of epidermal growth factor and somatomedin C receptors by prior treatment of cells with their respective growth factors did not reduce this effect. Kinase activation by thrombospondin was only marginally reduced in the presence of platelet-derived growth factor specific antibody at levels that totally inhibited platelet-derived growth factor (5 ng/ml) induced activation. Additionally, thrombospondin elicits a rapid dose-dependent phosphoinositide turnover response analogous to that of platelet-derived growth factor, epidermal growth factor and somatomedin C. Prior treatment of cells with phorbol ester for 48 hrs in serum-free culture medium resulted in a small enhancement of S6 kinase activation by thrombospondin and the above mentioned growth factors but a complete loss in the ability of phorbol ester to activate this enzyme. These findings with cultured smooth muscle cells suggest a growth factor-like role for thrombospondin.  相似文献   

5.
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.  相似文献   

6.
7.
Vanadate has been considered in the treatment of diabetes because of its insulin-like effects. However, it has severe toxic effects in both animal and man. In cultured cells, vanadate can either cause death or be growth stimulatory, depending on the cell type and growth conditions. Here, we report that in baboon aortic smooth muscle cells (SMCs), vanadate induced p42/p44 mitogen-activated protein kinase (MAPK) activity. This effect was abolished in the presence of the specific MAPK kinase (MAPKK) inhibitor PD098059. Although activation of p42/p44MAPK/MAPKK is generally thought to be necessary for proliferation, in SMCs, vanadate did not promote DNA synthesis and inhibited thymidine incorporation stimulated by platelet-derived growth factor (PDGF)-BB in a dose dependent fashion (IC50: 30 M). Prolonged exposure to vanadate exerted cytotoxic effects. Cells retracted, rounded up and detached from the substratum. These vanadate-induced morphological changes were blocked in the presence of PD098059. The addition of PDGF-BB further activated p42/p44MAPK/MAPKK in the presence of vanadate and substantially increased vanadate toxicity. We conclude from these observations that activation of the p42/p44MAPK/MAPKK signalling module contributes to the cytotoxic effects induced by vanadate.  相似文献   

8.
9.
Liu D  Lu JS  Yin XL 《生理学报》2000,52(6):483-486
观察pp60c-src在血管紧张素Ⅱ(AngⅡ)诱导血管平滑肌细胞(VSMCs)内丝裂原活化蛋白激酶(MAPK)激活中的作用,以了解AngⅡ促VSMCs增殖的信号转导过程。将合成的反义c-src寡脱氧核苷酸(oligodeoxynucle-otides,ODNs)以脂质体包裹转染培养的大鼠VSMCs,用Western印迹测得细胞裂解液中pp60c-src含量明显下降,免疫沉淀方法测得pp60c-s  相似文献   

10.
11.
The ability of endothelin to promote phospholipid hydrolysis has been studied in myo-[2-3H]-inositol-, [3H]-arachidonic acid- or methyl-[3H]choline chloride-prelabelled cultured vascular smooth muscle cells (VSMC) from rat and bovine thoracic aortae and human omental vessels. The biochemical responses to endothelin were comparable between the different VSMC isolates. Endothelin promoted the accumulation of glycerolphospho[3H]inositol and concomitant loss of [3H]-inositol label from phosphatidylinositol. Exposure of [3H]choline-labelled VSMC to endothelin resulted in a loss of radioactivity from phosphatidylcholine that was inversely parallelled by an increase in water-soluble [3H]-choline metabolites. In [3H]-arachidonic acid ([3H]-AA)-labelled VSMC, endothelin induced extracellular release of [3H]-AA which derived from both phosphatidylcholine and phosphatidylinositol. Half-maximally effective concentrations of endothelin for all these responses were approximately 2-7 nM and did not vary between VSMC types. Endothelin-induced release of [3H]-AA into VSMC medium-overlay was inhibited by quinacrine and nordihydroguaiaretic acid but not by neomycin or indomethacin. The data herein implicate activation of phospholipase A2 by endothelin with subsequent metabolism of arachidonic acid via the lipoxygenase pathway.  相似文献   

12.
Oxidized low-density lipoprotein (ox-LDL) has been shown to alter the migratory and proliferative activities of the vascular endothelial cells (EC) in response to serum and growth factors. The mechanism underlying the antiproliferative effect of ox-LDL on vascular EC has not been fully elucidated. In this report, we show that exposure of vascular EC to ox-LDL results in a marked reduction of the membrane-associated Ras protein. Further study shows that in ox-LDL-treated EC, reduction of the membrane-associated Ras protein is correlated with a reduced amount of active Ras (Ras-guanosine triphosphate), indicating that the Ras signaling pathway is attenuated. The attenuation of the Ras signaling pathway in ox-LDL-treated EC may thus be responsible for the retarded response to the mitogenic stimulation of serum and growth factors.  相似文献   

13.
Exposure of vascular smooth muscle cells to arginine vasopressin (AVP) increases smooth muscle alpha-actin (SM-alpha-actin) expression through activation of the SM- alpha-actin promoter. The goal of this study was to determine the role of the mitogen-activated protein kinase (MAP kinase) family in regulation of SM-alpha-actin expression. AVP activated all three MAP kinase family members: ERKs, JNKs, and p38 MAP kinase. Inhibition of JNKs or p38 decreased AVP-stimulated SM-alpha-actin promoter activity, whereas inhibition of ERKs had no effect. A 150-base pair region of the promoter containing two CArG boxes was sufficient to mediate regulation by vasoconstrictors. Mutations in either CArG box decreased AVP-stimulated promoter activity. Electrophoretic mobility shift assays using oligonucleotides corresponding to either CArG box resulted in a complex of similar mobility whose intensity was increased by AVP. Antibodies against serum response factor (SRF) completely super-shifted this complex, indicating that SRF binds to both CArG boxes. Overexpression of SRF increased basal promoter activity, but activity was still stimulated by AVP. AVP stimulation rapidly increased SRF phosphorylation. These data indicate that both JNKs and p38 participate in regulation of SM- alpha-actin expression. SRF, which binds to two critical CArG boxes in the promoter, represents a potential target of these kinases.  相似文献   

14.
Eicosanoid production is reduced when the nitric oxide (NO·) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO· and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO· and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western blot analysis of rat arterial smooth muscle cells demonstrated that peroxynitrite (100–500 µM) and 3-morpholinosydnonimine (SIN-1; 200 µM) stimulate phosphorylation of extracellular signal-regulated kinase (ERK), p38, and cytosolic phospholipase A2 (cPLA2). We found that peroxynitrite-induced arachidonic acid release was completely abrogated by the mitogen-activated protein/ERK kinase (MEK) inhibitor U0126 and by calcium chelators. With the p38 inhibitor SB-20219, we demonstrated that peroxynitrite-induced p38 phosphorylation led to minor arachidonic acid release, whereas U0126 completely blocked p38 phosphorylation. Addition of arachidonic acid caused p38 phosphorylation, suggesting that arachidonic acid or its metabolites are responsible for p38 activation. KN-93, a specific inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII), revealed no role for this kinase in peroxynitrite-induced arachidonic acid release in our cell system. Together, these results show that in response to peroxynitrite the cell initiates the MEK/ERK cascade leading to cPLA2 activation and arachidonic acid release. Thus studies investigating the role of the NO· pathway on eicosanoid production must consider the contribution of signaling pathways initiated by reactive nitrogen species. These findings may provide evidence for a new role of peroxynitrite as an important reactive nitrogen species in vascular disease. reactive nitrogen species; prostaglandin H2 synthase; extracellular signal-regulated kinase; p38; cytosolic phospholipase A2  相似文献   

15.
Endothelin, a novel peptide isolated from the conditioned medium of endothelial cells, causes a slow, sustained contraction of vascular smooth muscle, but its mechanism of action remains unclear. To determine whether the diacylglycerol/protein kinase C signalling pathway is stimulated by endothelin, we exposed cultured rat aortic smooth muscle cells to endothelin and measured diacylglycerol accumulation and protein kinase C-dependent protein phosphorylation. Endothelin stimulated a dose-dependent, biphasic increase in diacylglycerol, which was sustained for at least 20 min. This peptide also induced a prolonged phosphorylation of an acidic protein with a molecular weight of 76,000, which was detectable by 30 s and sustained for at least 20 min. This phosphorylation could be mimicked by phorbol 12-myristate 13-acetate, but not by ionomycin, and was markedly reduced when protein kinase C was down-regulated by a 24-h pretreatment with phorbol 12,13-dibutyrate. These results suggest that endothelin causes a robust stimulation of the diacylglycerol/protein kinase C pathway in cultured vascular smooth muscle cells, and that this mechanism may contribute importantly to the physiologic events stimulated by endothelin in intact blood vessels, including slow, tonic contraction and Ca2+ influx.  相似文献   

16.
Conway A  Pyne NJ  Pyne S 《Cellular signalling》2000,12(11-12):737-743
Previous studies have demonstrated that a number of biochemical actions of ceramide are mediated through protein kinase signalling pathways, such as p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) and c-Jun N-terminal directed protein kinase (JNK). Ceramide-activated protein kinases, such as the kinase suppressor of Ras (KSR) and protein kinase Czeta (PKCzeta), are involved in the regulation of c-Raf, which promotes sequential activation of MEK-1 and p42/p44 MAPK in mammalian cells. However, in cultured airway smooth muscle (ASM) cells, neither KSR nor PKCzeta are involved in the C2-ceramide (C2-Cer)-dependent activation of this kinase cascade. Instead, we found that C2-Cer utilises a novel pathway involving tyrosine kinases, phosphoinositide 3-kinase (PI3K) and conventional PKC isoform(s). We also found that despite its ability to stimulate p42/p44 MAPK, C2-Cer inhibited platelet-derived growth factor (PDGF)-stimulated DNA synthesis. The possibility that growth arrest could be mediated by JNK was discounted on the basis that PDGF, as well as ceramide, stimulated JNK in these cells. Therefore, growth arrest in response to ceramide is mediated by an alternative mechanism.  相似文献   

17.
Cellular responses to the vasoconstrictor peptide, endothelin, have been investigated in quiescent cultured human vascular smooth muscle cells (hVSMC). Endothelin caused intracellular alkalinization and activation of the protein synthetic enzyme S6-kinase, but such responses were not associated with any mitogenic effects of endothelin on hVSMC. In myo-[3H]inositol-prelabelled hVSMC endothelin elicited a rapid increase in inositol bis- and tris-phosphates and concomitant hydrolysis of polyphosphoinositol lipids. In [3H]arachidonate-prelabelled hVSMC endothelin promoted production of diacylglycerol, the early kinetics of which parallelled polyphosphoinositol lipid hydrolysis. Such phospholipase C activation by endothelin was sustained in hVSMC with accumulation of inositol polyphosphates being markedly protracted and the decay of diacylglycerol slow. Endothelin promoted extracellular release of [3H]arachidonate-labelled material from hVSMC which derived via deacylation of both phosphatidylinositol and phosphatidylcholine. This process was inhibited by phospholipase A2 and lipoxygenase inhibitors, but insensitive to phospholipase C and cyclooxygenase inhibitors. Endothelin-induced activation of phospholipase C and phospholipase A2 signal transduction pathways (EC50 approximately 5-8 nM for both) in hVSMC apparently proceed in an independent parallel manner rather than a sequential one.  相似文献   

18.
The hydrolysis of phosphatidylcholine (PC) associated with low-density lipoprotein (LDL) by homogenates of smooth muscle cells from rabbit aorta was studied. 1-Palmitoyl-2-[14C]oleoylPC associated with LDL (LDL-P[14C]OPC) or 1-linoleoyl-2-[14C]linoleoylPC associated with LDL (LDL-L[14C]LPC) was used as the substrate. The optimum pH for the formation of [14C]oleoyllysoPC from LDL-P[14C]OPC and for the formation of [14C]linoleoyllysoPC from LDL-L[14C]LPC was pH 4.5, and pH 4.5 and 7.0, respectively. These activities were designated as phospholipase A1 activities. The optimum pH values for the formation of [14C]oleate from LDL-L[14C]OPC and for the formation of [14C]linoleate from LDL-L[14C]LPC were pH 4.5 and 6.5, and pH 4.5, 6.5 and 8.5, respectively. These activities were designated as phospholipase A2 activities. Ca2+ did not affect acid phospholipase A1 activity, but decreased acid phospholipase A2 activity for the hydrolysis of LDL-L[14C]LPC. When smooth muscle cells were incubated with LDL, both phospholipase A1 and phospholipase A2 activities at pH 4.5 for the hydrolysis of LDL-L[14C]LPC increased significantly. These results indicate that phospholipases A1 and A2, which hydrolyze PC associated with LDL, exist in arterial smooth muscle cells and are involved in the metabolism of LDL incorporated into these cells.  相似文献   

19.
Smooth muscle caldesmon was phosphorylated in vitro by sea star p44mpk up to 2.0 mol of phosphate/mol of protein at both Ser and Thr residues. The phosphorylation sites were contained mainly in the COOH-terminal 10-kDa cyanogen bromide fragment which houses the binding sites for calmodulin, tropomyosin, and F-actin. Tryptic peptide maps of 32P-labeled caldesmon by p44mpk and p34cdc2 showed that while both enzymes recognized similar sites of phosphorylation, they have different preferred sites. Phosphorylation of caldesmon attenuated slightly its interaction with actin and had no effect on its binding to calmodulin and tropomyosin. Smooth muscle cell extracts from chicken gizzard and rat aorta contained 42- and 44-kDa proteins, respectively, which were cross-reactive with an antibody to sea star p44mpk. Immunoprecipitates from gizzard and aorta cell extracts, generated with the p44mpk antibody, possessed kinase activities toward myelin basic protein as well as caldesmon. These results suggest that MAP kinase may have functions in the differentiated smooth muscle cells distinct from those involved in the cell cycle.  相似文献   

20.
Protein kinase C and mitogen-activated protein (MAP) kinase are expressed in all smooth muscle cells and believed to be important in several physiologically relevant properties of this muscle. Our goal was to determine if protein kinase C and MAP kinase are activated by a simple increase in cellular Ca(2+) and to determine if protein kinase C is an upstream activator of MAP kinase. These studies were performed in the Triton X-100 detergent-skinned preparation of the swine carotid artery, which allows control of the intracellular environment without influence from membrane or receptor-mediated modulation. The p42 and p44 isoforms of MAP kinase were activated in a concentration-dependent fashion by an increase in Ca2+. This was shown by in-the-gel kinase assay and direct measurement of MAP kinase phosphotransferase activity. Protein kinase C was also activated by an increase in Ca2+, as shown by a novel assay that measures total active protein kinase C in the tissue. Inhibition of protein kinase C activity completely abolished MAP kinase activity. Additionally, inhibition of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) also abolished MAP kinase activity. Using intact swine carotid arteries, we showed p42 and p44 MAP kinase to be activated by both histamine and phorbol dibutyrate, but only the p42 isoform was calcium-sensitive. Our results suggest that a Ca(2+)-dependent isoform of protein kinase C and CaM kinase II are upstream activators of MAP kinase in the swine carotid artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号