首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, a new method has been described, in which membrane filtration is used to allow the levels of adenine nucleotides in the chloroplast stroma, the cytosol, and the mitochondrial matrix to be measured. This method is now used to investigate the effect of illumination, of respiratory inhibitors, and of uncouplers on the distribution of ATP, ADP, and AMP in wheat (Triticum aestivum var. `Timmo') leaf protoplasts. (a) The adenine nucleotides are apparently equilibrated by adenylate kinase in the stroma and the cytosol, but not in the mitochondrial matrix. (b) The ATP/ADP quotient in the cytosol is considerably higher than that in the mitochondrial matrix or the chloroplast stroma. (c) A large gradient exists between the ATP/ADP quotients in the cytosol and the mitochondrial matrix in the dark, with a very low ATP/ADP quotient in the mitochondria. This gradient is lowered by uncouplers or respiratory inhibitors showing that, as in animal tissues, it reflects the energization of the mitochondria. (d) In the dark, the stromal ATP/ADP is lower than in the light, and appears to be maintained, at least in part, by import from the cytosol. (e) The cytosolic ATP/ADP, however, actually decreases in the light. This contradicts the widespread assumption, that export of photosynthetically produced ATP from the chloroplast leads to an increase in the cytosolic ATP/ADP, which then inhibits oxidative phosphorylation in the mitochondria. (f) The mitochondrial ATP/ADP increases in the light, and the gradient between the cytosol and mitochondrial matrix falls. This is also difficult to understand in terms of an inhibition of oxidative phosphorylation in the light due to a lack of ADP in the cytosol. (g) The significance of the measured variations in the adenine nucleotide pools are discussed with respect to the diurnal carbohydrate metabolism in a leaf, and to the metabolic function of the chloroplast, the cytosol and the mitochondria.  相似文献   

2.
《FEBS letters》1987,212(1):114-118
Barley (Hordeum vulgare) protoplasts were incubated in darkness and in the light at saturating and limiting CO2 concentrations. The protoplasts were fractioned by a membrane filtration technique which allows quenching of the metabolism by acidification within about 0.1 s and the ATP/ADP ratios in the cytasol, chloroplasts and mitochondria were determined. It is concluded that the cytosolic ATP/ADP ratio is considerably higher during photosynthesis at limiting CO2 (which is the normal situation for a C3 plant in air) compared to photosynthesis at saturating CO2 or darkness.  相似文献   

3.
Auxin addition to protoplasts isolated from leaves of 6-day-old wheat seedlings (Triticum aestivum L. cv. Kadett) induced a rapid increase in the cytosolic calcium concentration [Ca2+]cyt. The shifts in [Ca2+]cyt were detected by use of fluorescence microscopy in single protoplasts loaded with the calcium binding tetra[acetoxymethyl]ester of the fluorescent dye, Fura 2. Addition of the synthetic auxin naphthyl acetic acid, 1-NAA, induced an increase in [Ca2+]cyt within 5-10s, while the physiologically non-active analogue, 2-NAA, did not. The amplitude of calcium increase depended on the concentration of 1-NAA. Since the process was affected by different concentrations of Ca2+ in the external medium, and since the calcium channel blockers (nifedipine and verapamil) postponed and inhibited the reaction, it is suggested that auxin primarily activates Ca2+-permeable channels in the plasma membrane. In the presence of low external calcium concentration (0.1 mM), 5 mM LiCl almost totally blocked the increase in [Ca2+]cyt, indicating a possible involvement of tonoplast Ca2+-channels in the auxin-induced [Ca2+]cyt shift. Thus, calcium signalling induced by auxin involves both external and internal Ca2+ pools.  相似文献   

4.
The rate of photosynthesis under high light (1000 micromole quanta per square meter per second) and at 25°C was measured during development of the third leaf on wheat plants and compared with the activity of several photosynthetic enzymes and the level of metabolites. The rate of photosynthesis reached a maximum the 7th day after leaf emergence and declined thereafter. There was a high and significant correlation between the rate of photosynthesis per leaf area and the activities of the enzymes ribulose 5-phosphate kinase (r = 0.91), ribulose 1,5-bisphosphate (RuBP) carboxylase (r = 0.94), 3-phosphoglycerate (PGA) kinase (r = 0.82), and fructose 1,6-bisphosphatase (r = 0.80) per leaf area. There was not a significant correlation of photosynthesis rate with chlorophyll content. The rate of photosynthesis was strongly correlated with the level of PGA (r = 0.85) and inversely correlated with the level of triose phosphate (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate) (r = 0.92). RuBP levels did not change much during leaf development; therefore photosynthesis rate was not correlated with the level of RuBP. The rate of photosynthesis was at a maximum when the ratio of PGA/triose phosphate was high, and when the ratio of RuBP/PGA was low. Although several enzymes change in parallel with leaf development, the metabolite changes suggest the greatest degree of control may be through RuBP carboxylase. The sucrose content of the leaf was highest under high rates of photosynthesis. There was no evidence that later in leaf development, photosynthesis (measured under high light and at 25°C) was limited by utilization of photosynthate.  相似文献   

5.
W. M. Kaiser  M. Schwitulla  E. Wirth 《Planta》1983,158(4):302-308
The effect of osmotic dehydration on metabolic reactions in three different subcellular compartments (chloroplast, cytoplasm and mitochondria) was studied in vacuum-infiltrated thin leaf slices from various plants, in the absence of stomatal control. The reactions tested were CO2 fixation in the light (chloroplast), CO2 fixation in the dark (cytoplasm), and O2 uptake in the dark (mitochondria). In most plants, the sensitivity of dark CO2 fixation to dehydration was similar to the sensitivity of photosynthesis. In leaf slices from a plant with Crassulacean acid metabolism (Kalanchoe pinnata), dark CO2 fixation (which reached similar rates as light fixation) was slightly more sensitive to osmotic stress than photosynthesis. Dark respiration (measured as O2 uptake) was significantly more resistant to hypertonic stress than both types of CO2 fixation. In crude leaf extracts from spinach, the response of soluble enzymes from the three different subcellular compartments to high concentrations of various electrolytes and neutral compounds was examined and compared with the in-vivo data.  相似文献   

6.
The redox level and compartmentation of pyridine nucleotides was studied under photorespiratory and non-photorespiratory conditions using rapid fractionation of barley ( Hordeum vulgare L. cv. Gunilla, Svalöv) leaf protoplasts. From comparative measurements of the NADPH/NADP+ ratio and the ATP/ADP ratio one acidic and one alkaline extraction medium was chosen which quenched the metabolism very efficiently. The mitochondrial NADH/NAD+ was higher under photorespiratory conditions than under non-photorespiratory conditions. Aminoacetonitrile, an inhibitor of the photorespiratory conversion of glycine to serine, lowered the mitochondrial NADH/NAD+ ratio. This supports the hypothesis that glycine oxidation is coupled to oxidative phosphorylation to provide ATP to the cytosol. The chloroplastic NADPH/NADP+ as well as the NADH/NAD+ ratios were quite stable in saturating and limiting CO2 as well as in the presence of aminoacetonitrile, although the triosephosphate/phosphoglycerate ratios changed. Thus, the redox level in the stroma seems to be tightly regulated.  相似文献   

7.
Foyer  Christine  Rowell  Jackie  Walker  David 《Planta》1983,157(3):239-244
Planta - Protoplasts prepared from spinach leaves in May and June contained substantial amounts of ascorbate (1.33±0.28 μmol mg-1 chlorophyll), of which 30–40% was localised in the...  相似文献   

8.
Protoplasts, protoplast extracts (intact chloroplasts plus extrachloroplastic material), and chloroplasts isolated from protoplasts of wheat (Triticum aestivum) have rates of photosynthesis as measured by light-dependent O2 evolution of about 100 to 150 micromoles of O2 per milligram of chlorophyll per hour at 20 C and saturating bicarbonate. The assay conditions sufficient for this activity were 0.4 molar sorbitol, 50 millimolar N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid KOH (pH 7.6), and 10 millimolar NaHCO3 with protoplast, plus a requirement of 1 to 10 millimolar ethylenediaminetetraacetate (EDTA) and 0.2 to 0.5 millimolar inorganic orthophosphate (Pi) with protoplast extracts and chloroplasts. Protoplast extracts evolved approximately 6 micromoles of O2 per milligram of chlorophyll before photosynthesis became largely dependent on exogenous Pi while photosynthesis by chloroplasts had a much stronger dependence on exogenous Pi from the outset.

Photosynthesis by chloroplasts from 6-day-old wheat plants under optimum levels of Pi was similar to that with the addition of 5 millimolar inorganic pyrophosphate (PPi) plus 0.2 millimolar adenosine-5′-diphosphate (ADP). Either PPi or ADP added separately inhibited photosynthesis. When chloroplasts were incubated in the dark for 2 to 6 minutes, photosynthesis was strongly inhibited by 5 millimolar PPi and this inhibiting was relieved by including adenosine-5′-triphosphate (ATP) or ADP (0.2 to 0.6 millimolar). Chloroplasts from 9-day-old wheat leaves were slightly less sensitive to inhibition by PPi and showed little or no inhibition by ADP.

Chloroplasts isolated from protoplasts and assayed with 0.3 millimolar Pi added before illumination have an induction time from less than 1 minute up to 16 minutes depending on the time of the assay after isolation and the components of the medium. In order to obtain maximum rates of photosynthesis and minimum induction time, NaHCO3 and chelating agents, EDTA or PPi (+ATP), are required in the chloroplast isolation, resuspension and assay medium. With these inclusions in the isolation and resuspension medium the induction time decreased rapidly during the first 20 to 30 minutes storage of chloroplasts on ice. Requirements for isolating intact and photosynthetically functional chloroplasts from wheat protoplasts are discussed.

  相似文献   

9.
Plasma fractionation by membrane filtration permits the reinfusion of the patient with his own albumin. In this study, the influence of membrane nature and plasma flux on plasma fractionation in dead-end mode is investigated with acetate hollow fiber filters. It is found that transmembrane pressure TMP rises exponentially with time, the rate of increase being proportional to plasma flux. The faster TMP rises, the faster the drop in sieving coefficient SC. It is also found that albumin SC is a function of TMP and not of plasma flux. Theoretical analysis of the dead-end filtration was performed. This theoretical model indicates that the observed variation of TMP with time is consistent with the assumptions that pore volume decreases proportionally to the filtrate plasma volume.  相似文献   

10.
Abstract Unlike wheat chloroplasts, wheat protoplasts showed a pronounced restoration of the induction phase after a short period of darkness. This difference was used to investigate the relative roles of light-induced reductive activation of enzymes and the auto-catalytic increase in the level of substrates in the control of the rate of photosynthesis during induction. Light activation and dark inactivation of ribulose 5-phosphate kinase, fructose 1,6-biphosphatase and NADP+-specific glyceraldehydephosphate dehydrogenase were measured. In this respect there was no appreciable difference between protoplasts and chloroplasts. In contrast, the level of photosynthetic intermediates remained constant in darkened isolated chloroplasts, but declined rapidly in chloroplasts isolated from darkened protoplasts. When fructose 1,6-bisphosphatase was pre-activated by treating protoplasts with dithiothreitol the lag was only slightly shortened. These results are discussed in terms of control of the rate of the photosynthesis during the lag by substrates rather than limitation imposed by activity of any of the enzymes measured.  相似文献   

11.
We report here that enzyme activation precedes the rise in metabolite levels, which appear to limit photosynthetic CO2 fixation during induction in pea leaf chloroplasts. Therefore light activation may be required for the build-up of photosynthetic intermediates and hence for photosynthesis in isolated chloroplasts. Analysis of metabolite levels and the known kinetic properties of the chloroplast enzymes indicates that the reductive pentose phosphate cycle is subject to control which fluctuates between several points during induction and when CO2 fixation is maximal. The transketolase-aldolase-catalyzed reactions around sedoheptulose-biphosphatase appear to provide a simple and effective primary control for photosynthetic CO2 fixation. When substrate levels and enzyme active site concentrations are taken into account, there is insufficient glyceraldehyde 3-phosphate dehydrogenase, aldolase, and transketolase activity to support photosynthetic CO2 fixation at observed rates. These results suggest that there may be direct transfer of glyceraldehyde 3-phosphate among these enzymes in the pea chloroplast.  相似文献   

12.
Intact protoplasts are ruptured by rapid centrifugation through a narrow-aperture nylon mesh and the intact chloroplasts are then separated from the cytoplasm by sedimentation through a layer of silicone oil below the mesh. Within 6 to 8 s of starting the centrifuge, 90% of the chloroplasts are separated into the pellet fraction which contains only 10 to 15% contamination by mitochondria and peroxisomes and less than 5% contamination by soluble cytoplasm as judged by the distribution of marker enzymes. This technique should allow determination of the distribution of metabolites between the chloroplast and cytoplasmic compartments of intact protoplasts.  相似文献   

13.
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the ‘P700 oxidation capacity’ of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast–mitochondrion interactions able to overcome lesions in energy metabolism.  相似文献   

14.
In this work the influence of the nodulation of pea (Pisum sativum L.) plants on the oxidative metabolism of different leaf organelles from young and senescent plants was studied. Chloroplasts, mitochondria, and peroxisomes were purified from leaves of nitrate-fed and Rhizobium leguminosarum-nodulated pea plants at two developmental stages (young and senescent plants). In these cell organelles, the activity of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), and the ascorbate and glutathione contents were determined. In addition, the total superoxide dismutase (SOD) activity, the pattern of mitochondrial and peroxisomal NADPH-generating dehydrogenases, some of the peroxisomal photorespiratory enzymes, the glyoxylate cycle and oxidative metabolism enzymes were also analysed in these organelles. Results obtained on the metabolism of cell organelles indicate that nodulation with Rhizobium accelerates senescence in pea leaves. A considerable decrease of the ascorbate content of chloroplasts, mitochondria, and peroxisomes was found, and in these conditions a metabolic conversion of leaf peroxisomes into glyoxysomes, characteristic of leaf senescence, took place.  相似文献   

15.
R. Hampp 《Planta》1980,150(4):291-298
Purified intact protoplasts were isolated from etiolated and greening leaves of Avena sativa. They were ruptured by forcing them through a 20-m aperture nylon net and immediately thereafter fractionated into a pure pellet of plastids (well above 70% of total plastids), a layer of mitochondria only slightly contaminated by other cellular constituents (about 50% of total mitochondria), and a cytoplasmic supernatant. This was achieved within 60 s by an integrated method of homogenation of protoplasts and centrifugal filtration of the homogenate on a gradient of silicone oils, contained together with the nylon net in 450 l microtubes, and verified by comparing the levels of activity of specific markers within the three fractions obtained. With appropriate modifications to immediately quench metabolic reactions within the fractions, this method allows the determination of metabolite levels within plastids, mitochondria, and the cytoplasmic compartment of intact protoplasts. The applicability of this technique is demonstrated by the determination of ATP in the plastids, mitochondria, and the cytoplasm of protoplasts obtained from etiolated and greening primary leaves of Avena. The levels of ATP, corrected for contamination of the fractions by each other, exhibit a pronounced transient increase during greening, especially within the cytoplasm.Abbreviations BSA bovine serum albumin - Cyt c cytochrome c - EDTA ethylenediamine tetraacetic acid - HEPES N-2-hydroxyethyl-piperazine-N-2-ethane sulphonic acid - MES 2(N-morpholino) ethane sulphonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenol pyruvic acid - RuBP ribulose-1.5-bis-phosphate  相似文献   

16.
17.
18.
To date, Arabidopsis purple acid phosphatase 2 (AtPAP2) is the only known plant protein that is dual-targeted to chloroplasts and mitochondria by a C-terminal targeting signal. Using in vitro organelle import and green fluorescence protein (GFP) localization assays, we showed that AtPAP2 is located on, but not imported across the outer membrane (OM) of chloroplasts and mitochondria and exposed its N-terminal enzymatic domain to the cytosol. It was also found that a short stretch of 30 amino acids (a.a.) at the C-terminal region (a.a. 615-644) that contains a stretch of 18 hydrophobic residues, a WYAK motif and 8 hydrophilic residues is sufficient for dual-targeting. Mutation of WYAK to WYAE had no effect on dual-targeting ability suggesting that the charge within this flanking region alone is not an important determinant for dual-targeting.     相似文献   

19.
The evaluation of the translation capacity of cells that produce recombinant proteins can be made by monitoring their ribosomal composition. In a previous use of asymmetrical flow field-flow fractionation (AsFlFFF) for this purpose the overall analysis time was more than 1 h and 40 min, based on a standard protocol for cell harvest, washing, cell disruption, and the final 8-min AsFlFFF determination of ribosome and subunits. In the present work the overall analysis time was reduced to 16 min. The washing step was deleted and a time-consuming freeze-thaw cycle. Cell disruption was obtained by a time-minimized lysozyme and detergent treatment for 1.5 min, respectively. The ribosomal material was finally fractionated and quantified in only 6 min, without previous centrifugation, using AsFlFFF. The great time reduction will enable the future use of AsFlFFF at-line to a growing cell cultivation, continuously monitoring the change in ribosomal composition or in other applications requiring high sample throughput. To demonstrate the high efficiency of the method the ribosome and tRNA composition in an Escherichia coli cultivation was monitored every half an hour, giving 18 measurements across the complete growth curve, a frequency of data enough to make decisions about induction or termination of the cultivation.  相似文献   

20.
Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号