首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that the extremely low-frequency electromagnetic field (EMF) can promote the healing of bone fractures, but its mechanism remains poorly understood. The purpose of this study was to examine the response of neonatal rat calvarial bone cells to the rectangular electromagnetic field (REMF), triangular electromagnetic field (TEMF), sinusoidal electromagnetic field (SEMF), and pulsed electromagnetic field (PEMF). The stimulatory effects of EMF were evaluated by the proliferation (methyltetrazolium colorimetric assay), differentiation (alkaline phosphatase (ALP) activity), and mineralization (area of mineralized nodules of the cells). REMF treatment of osteoblasts increased cellular proliferation and decreased ALP activity (p < 0.05). TEMF had an accelerative effect on the cellular mineralized nodules (p < 0.05). SEMF treatment of osteoblasts decreased the cellular proliferation, increased ALP activity, and suppressed mineralized nodules formation (p < 0.05). PEMF promoted the proliferation of osteoblasts, inhibited their differentiation, and increased the mineralized nodules formation (p < 0.05). Moreover, the effects of PEMF on osteoblasts were concerned with the extracellular calcium, P2 receptor on the membrane, and PLC pathway, but the response of osteoblasts on SEMF was only related to PLC pathway. The results suggested that the waveforms of EMF were the crucial parameters to induce the response of osteoblasts.  相似文献   

2.
新型旋转壁式生物反应器内三维组织工程骨的构建   总被引:8,自引:0,他引:8  
利用微载体悬浮培养法将成骨细胞在旋转壁式生物反应器内进行大规模扩增,并检测细胞的组织形态和生物功能.然后以此作为种子细胞,分别以2×106个/ml和1×106个/ml两种密度接种到支架材料上,于旋转壁式生物反应器(RWV)内进行三维组织工程骨的构建.并将所构建的骨组织分别进行倒置显微镜(inverted microscope)、扫描电镜(SEM)、碱性磷酸酶(ALP)、矿化结构和AO/EB双重荧光染色等生物学性能检测,以及对培养过程的营养物质代谢情况进行监控和分析.结果表明,在RWV中培养的骨组织生长良好,分泌大量胶原纤维,并有矿化基质和新骨样组织形成. 由上述结果可断定,通过RWV内部流体对流所产生的应力刺激,可提高成骨细胞碱性磷酸酶的活性表达,并加速矿化结节的形成,从而完成成骨细胞的快速增殖与分化以及工程化组织的三维构建.  相似文献   

3.
Mixed isomers of conjugated linoleic acid (CLA) have been shown to have variable effects on bone formation and resorption in animals. The variable effects of CLA on bone physiology may be due to the different isomers present in common commercial preparations of CLA, and the effects of the predominant individual isomers (9cis,11trans and 10trans,12cis CLA) are not clear. The objective of this study was to determine the effects of individual and mixed isomers of CLA on mineralized bone nodule formation and alkaline phosphatase (ALP) activity in vitro using long-term cultures of SaOS-2 cells. Mineralized bone nodules were stained using the von Kossa method, and ALP activity in cell lysates was measured as a marker of early osteoblast differentiation. The 9cis,11trans isomer increased the number (~4- to 11-fold) and size (~2- to 5-fold) of mineralized bone nodules from 25 to 100 microM, but the 10trans,12cis isomer did not. The increase in mineralized bone nodule formation by 9cis,11trans CLA was accompanied by a variable increase in ALP activity. These results show that the 9cis,11trans isomer of CLA increases the formation of mineralized bone nodules using bone cells of human origin, and provide evidence for isomer-specific effects of CLA on bone health.  相似文献   

4.
Diabetes mellitus and estrogen deficit are known causes of osteopenia in animal models as well as in humans. In the present work, the combined effect of ovariectomy and diabetes was investigated. Diabetes was induced in ovary-intact and ovariectomized female Wistar rats with a single injection (50 mg/kg body weight, i.p.) of streptozotocin. The rats were administered insulin (I) daily or 17-beta estradiol (E2) on alternate days for a period of 35 days and sacrificed. Serum calcium (Ca2+), phosphorus (P), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP), vertebral ALP, collagen, and glycosaminoglycans were estimated. The levels of serum Ca2+ and P increased in diabetic rats, but decreased after I or E2 treatments. Serum ALP and TRAP activity increased in the ovary-intact and ovariectomized diabetic rats. Vertebral ALP activity increased in ovariectomized diabetic rats, but decreased in diabetic rats, which were treated with I or E2. In the vertebrae, TRAP activity was elevated as a result of diabetes, but this was prevented by insulin or estradiol. Diabetes induced a decrease in total collagen in the vertebrae, while I or E2 treatment induced an increase. The levels of chondroitin sulphate and heparan sulphate decreased significantly in the vertebrae of both ovary-intact and ovariectomized diabetic rats, while hyaluronic acid increased. In conclusion, diabetes and ovariectomy each seem to affect the process of matrix formation and mineralization in the bone, and this is aggravated by the combination of diabetes and ovariectomy. The effects of I and E2 were similar, and both hormones reversed the changes brought about by diabetes.  相似文献   

5.
6.
董淑凤  史久慧  王屹博  丁超  杜杰 《生物磁学》2013,(36):7021-7024
目的:骨组织的形成是一个复杂的过程,受多种因素的影响,糖尿病所导致的持续高血糖对于成骨分化的影响机制尚不明确,以及在此分化过程中的各种细胞因子的作用机理仍不明了,现拟通过体外成骨诱导环境,观察高糖和碱性成纤维细胞生长因子(fibroblastgrowthfactorbFGF)对人骨髓间充质干细胞(humanmesenchymalstemcellshMSCs)成骨分化的影响。方法:hMSC在5.5mmol/L和25mmol/L葡萄糖浓度下培养6天,使用cck一8法测定各组细胞增殖情况;hMSC在两种糖浓度下成骨诱导28天,通过碱性磷酸酶(ALP)活性检测、茜素红染色、钙结节半定量检测,对比各组成骨分化活性;在两种糖浓度成骨诱导液中加入10ng/mlbFGF,使用RT—PCR技术检测各组细胞OCN、OPNmRNA表达差异。结果:高糖较正常糖浓度细胞增殖率下降,ALP活性降低,茜素红染色钙结节量减少,RT—PCR检测结果显示25mmol/L组OCN、OPNmRNA表达量低于5.5mmol/L组,加入bFGF后,25mmol/L组仍低于5.5mmol/L组,与未添加bFGF同葡萄糖组比较表达增加。结论:高糖使hMSC增殖能力下降,在成骨分化的过程中ALP活性降低,成骨相关基因OCN、OPN表达量下降,证明了高糖对hMSC成骨分化具有抑制作用,当加入bFGF后,改善了高糖对hMSC的抑制作用,提示糖尿病条件下高糖的存在是导致hMSC成骨分化能力下降的不利因素,同时初步证明了bFGF参与了成骨分化的过程,从而为在分子水平探讨糖尿病患者种植义齿骨结合形成相关机制奠定初步的基础..  相似文献   

7.
Zinc is an important mineral that is required for normal bone development. However, the direct effects of zinc on the mineralization of bone cells of human origin are not clear. The objective of this study was to determine the effects of zinc on the differentiation of SaOS-2 human osteoblast-like cells and the formation of mineralized bone nodules. Cells were cultured for 8 d and then transferred to zinc-free medium and treated with varying concentrations (0–50 μM) of zinc. Alkaline phosphatase (ALP) activity was used as a measure of osteoblast differentiation, and bone nodules were detected by von Kossa staining. After 4, 6, and 8 d of treatment, zinc increased ALP activity at 1 and 10 μM, but decreased activity at 50 μM. After 9 d of treatment, zinc increased both the number and area of mineralized bone nodules at low concentrations (1 and 10 μM), but decreased both at higher concentrations (25 and 50 μM). These findings demonstrate that zinc has biphasic effects on the differentiation and mineralization of human osteoblast-like cells.  相似文献   

8.
Rat bone marrow stromal cells were cultured in vitro. At days 14-15 of culture, dense clusters of polygonal cells were formed, and they mineralized 2-3 days later. The cells resembling osteoblasts or young osteocytes were histologically observed to be embedded in mineralized or unmineralized extracellular matrices of the nodules. Next, these mineralized nodules were electron-microscopically examined. The osteoblastic cells associated with the nodules had a well-developed rough endoplasmic reticulum, an evident Golgi apparatus and some mitochondria as their intracellular organellae. Some lysosomes and microfilaments were also visible in the cytoplasms. Moreover, some cells protruded cell processes toward the neighboring cells through the extracellular matrix. The extracellular matrix consisted of numerous collagen fibrils which were striated with 60-70 nm axial periodicity and which was similar to bone tissue collagen. A large number of matrix vesicles were scattered among the collagen fibrils in the unmineralized area of the nodules. In contrast, in the mineralized area, numerous matrix vesicles at different stages of maturation and many calcified spherules were observed. That is the mineralization in this culture system was considered to be initiated in association with the matrix vesicles and to progress along the collagen fibrils. From these findings, it was confirmed by the present study that the mineralized nodules formed in this bone marrow stromal cell culture were ultrastructurally similar to bone and that the mineralization also proceeded by going through the normal calcification process. This culture system is considered to be available to study osteogenic differentiation and calcification mechanisms.  相似文献   

9.
Summary The types and distribution of glycosaminoglycans (GAGs) were studied immunocytochemically in osteoid, mineralized bone matrix, and cartilage matrix of growing rat metaphyseal bone after aldehyde fixation and EDTA demineralization, using four monoclonal antibodies (mAbs 1-B-5, 2-B-6, 3-B-3 and 5-D-4). These mAbs specifically recognize epitopes in non-sulphated chondroitin (C0-S); chondroitin 4-sulphate (C4-S) and dermatan sulphate (DS); chondroitin 6-sulphate (C6-S) and C0-S; and keratan sulphate (KS) respectively. In osteoid, all mAbs except 1-B-5 weakly stained matrix material on and between collagen fibrils, and moderately stained organic material corresponding to bone nodules, which are known sites of mineralization. However, the staining of osteoid abruptly decreased at the mineralization front; weak staining was confined mostly to the organic material of bone nodules in mineralized bone matrix, with very weak or no staining of the rest of the bone matrix. This staining progressively decreased toward the mineralized cartilage matrix and became negative. The mineralized cartilage matrix and lamina limitans reacted strongly with all mAbs except 5-D-4. These results indicate that osteoid contains sulphated proteoglycans containing C4-S and/or DS, C6-S and KS, and subsequent bone matrix mineralization appears to require accumulation of these macromolecules within bone nodules and eventual loss of these substances for complete mineralization, whereas proteoglycans containing C0-S, C4-S and/or DS, and C6-S, still exist in mineralized cartilage matrix and lamina limitants.  相似文献   

10.
Current studies have found that low-dose irradiation (IR) can promote bone regeneration. However, mechanism studies of IR-triggered bone regeneration mainly focus on the effects of osteoblasts, neglecting the role of the surrounding immune microenvironment. Here in this study, in vitro proliferation experiments showed that low-dose IR ≤2 Gy could promote the proliferation of bone marrow mesenchymal stem cells (BMSCs), and qRT-PCR assay showed that low-dose IR ≤2 Gy could exert the M2 polarization of Raw264.7 cells, while IR >2 Gy inhibited BMSC proliferation and triggered M1 polarization in Raw264.7 cells. The ALP and mineralized nodules staining showed that low-dose IR ≤2 Gy not only promoted osteoblast mineralization through IR-triggered osteoblast proliferation but also through M2 polarization of Raw264.7 cells, while high-dose IR >2 Gy had the opposite effect. The co-incubation of BMSC with low-dose IR irradiated Raw264.7 cell supernatants increased the mRNA expression of BMP-2 and Osx. The rat cranial defects model revealed that low-dose IR ≤2 Gy gradually promoted bone regeneration, while high-dose IR >2 Gy inhibited bone regeneration. Detection of macrophage polarity in peripheral blood samples showed that low-dose IR ≤2 Gy increased the expression of CD206 and CD163, but decreased the expression of CD86 and CD80 in macrophages, which indicated M2 polarization of macrophages in vivo, while high-dose IR had the opposite effect. Our finding innovatively revealed that low-dose IR ≤2 Gy promotes bone regeneration not only by directly promoting the proliferation of osteoblasts but also by triggering M2 polarization of macrophages, which provided a new perspective for immune mechanism study in the treatment of bone defects with low-dose IR.  相似文献   

11.
Vertebral collagen, glycosaminoglycans (GAGs), tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were measured in ovariectomized (ovx) adult Wistar rats treated with estradiol (E 2 ) (10 micro g/kg BW for 35 days on alternate days, and progesterone (P 4 ) (140 micro g/kg BW for 35 days on alternate days) in E 2 + P 4 treated rats. P 4 given alone or in combination with E 2 significantly increased the levels of collagen in the vertebral bone. Neither ovx nor E 2 treatment altered the concentration of collagen in these rats. Administration of E 2 or P 4 significantly decreased the concentration of hyaluronic acid (HA), but remaining unaffected when a combination of these steroids was given. In contrast to their effect on HA, E 2 and P 4 each significantly increased the levels of chondroitin sulfate (CS) in the vertebral bone. The specific activity of ALP was decreased after ovx. E 2 and P 4 alone or in combination also registered a significant decrease in the activities of ALP and TRAP. The results suggest that E 2 and P 4 each exert definite effects on vertebral bone turnover in ovariectomized rats.  相似文献   

12.
Wang J  Liu B  Gu S  Liang J 《Cell proliferation》2012,45(2):121-131
Objectives: The Wnt signalling pathway has been shown to play an important role in tooth development, however its effects with stem cells from the apical papilla (SCAP) have remained unclear. The purpose of this study was to determine effects of Wnt/β‐catenin on proliferation and differentiation of SCAP in vitro. Materials and methods: SCAP were obtained, identified and cultured. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of mineralization‐related genes and mineralized nodule formation were measured in presence or absence of various concentrations of lithium chloride. Results: MTT assay and flow cytometry demonstrated that Wnt/β‐catenin activity could promote proliferation of SCAP. Real‐time PCR analysis found that Wnt/β‐catenin strongly upregulated expression of dentine sialophosphoprotein, osteocalcin and ALP in SCAP after incubation with mineralization induction medium, while ALP and alizarin red staining indicated that Wnt/β‐catenin enhanced ALP activity and formation of mineralized nodules. Conclusion: Our results suggest that canonical Wnt/β‐catenin signalling promotes proliferation and odonto/osteogenic differentiation of SCAP.  相似文献   

13.
A continuous source of osteoblasts for normal bone maintenance, as well as remodeling and regeneration during fracture repair, is ensured by the mesenchymal osteoprogenitor stem cells of the bone marrow (BM). The differentiation and maturation of osteoprogenitor cells into osteoblasts are thought to be modulated by transforming growth factors-beta (TGF-beta1 and TGF-beta2) and TGF-beta-related bone morphogenetic proteins (BMPs). To define the responses of mesenchymal osteoprogenitor stem cells to several growth factors (GFs), we cultured Fischer 344 rat BM cells in a collagen gel medium containing 0.5% fetal bovine serum for prolonged periods of time. Under these conditions, survival of BM mesenchymal stem cells was dependent on the addition of GFs. Recombinant hTGF-beta1-F2, a fusion protein engineered to contain an auxiliary collagen binding domain, demonstrated the ability to support survival colony formation and growth of the surviving cells, whereas commercial hTGF-beta1 did not. Initially, cells were selected from a whole BM cell population and captured inside a collagen network, on the basis of their survival response to added exogenous GFs. After the 10-day selection period, the surviving cells in the rhTGF-beta1-F2 test groups proliferated rapidly in response to serum factors (10% FBS), and maximal DNA synthesis levels were observed. Upon the addition of osteoinductive factors, osteogenic differentiation in vitro was evaluated by the induction of alkaline phosphatase (ALP) expression, the production of osteocalcin (OC), and the formation of mineralized matrix. Concomitant with a down-regulation of cell proliferation, osteoinduction is marked by increased ALP expression and the formation of colonies that are competent for mineralization. During the induction period, when cells organize into nodules and mineralize, the expression of OC was significantly elevated along with the onset of extracellular matrix mineralization. Differentiation of BM mesenchymal stem cells into putative bone cells as shown by increased ALP, OC synthesis, and in vitro mineralization required the presence of specific GFs, as well as dexamethasone (dex) and beta-glycerophosphate (beta-GP). Although rhTGF-beta1-F2-selected cells exhibited the capacity to mineralize, maximal ALP activity and OC synthesis were observed in the presence of rhBMPs. We further report that a novel rhTGF-beta1-F2 fusion protein, containing a von Willebrand's factor-derived collagen binding domain combined with a type I collage matrix, is able to capture, amplify, and stimulate the differentiation of a population of cells present in rat BM. When these cells are subsequently implanted in inactivated demineralized bone matrix (iDBM) and/or diffusion chambers into older rats they are able to produce bone and cartilage. The population of progenitor cells captured by rhTGF-beta1-F2 is distinct from the committed progenitor cells captured by rhBMPs, which exhibit a considerably more differentiated phenotype.  相似文献   

14.
15.
A continuous source of osteoblasts for normal bone maintenance, as well as remodeling and regeneration during fracture repair, is ensured by the mesenchymal osteoprogenitor stem cells of the bone marrow (BM). The differentiation and maturation of osteoprogenitor cells into osteoblasts are thought to be modulated by transforming growth factors-β (TGF-β1 and TGF-β2) and TGF-β-related bone morphogenetic proteins (BMPs). To define the responses of mesenchymal osteoprogenitor stem cells to several growth factors (GFs), we cultured Fischer 344 rat BM cells in a collagen gel medium containing 0.5% fetal bovine serum for prolonged periods of time. Under these conditions, survival of BM mesenchymal stem cells was dependent on the addition of GFs. Recombinant hTGF-β1-F2, a fusion protein engineered to contain an auxiliary collagen binding domain, demonstrated the ability to support survival colony formation and growth of the surviving cells, whereas commercial hTGF-β1 did not. Initially, cells were selected from a whole BM cell population and captured inside a collagen network, on the basis of their survival response to added exogenous GFs. After the 10-day selection period, the surviving cells in the rhTGF-β1-F2 test groups proliferated rapidly in response to serum factors (10% FBS), and maximal DNA synthesis levels were observed. Upon the addition of osteoinductive factors, osteogenic differentiation in vitro was evaluated by the induction of alkaline phosphatase (ALP) expression, the production of osteocalcin (OC), and the formation of mineralized matrix. Concomitant with a down-regulation of cell proliferation, osteoinduction is marked by increased ALP expression and the formation of colonies that are competent for mineralization. During the induction period, when cells organize into nodules and mineralize, the expression of OC was significantly elevated along with the onset of extracellular matrix mineralization. Differentiation of BM mesenchymal stem cells into putative bone cells as shown by increased ALP, OC synthesis, and in vitro mineralization required the presence of specific GFs, as well as dexamethasone (dex) and β-glycerophosphate (β-GP). Although rhTGF-β1-F2-selected cells exhibited the capacity to mineralize, maximal ALP activity and OC synthesis were observed in the presence of rhBMPs. We further report that a novel rhTGF-β1-F2 fusion protein, containing a von Willebrand's factor-derived collagen binding domain combined with a type I collage matrix, is able to capture, amplify, and stimulate the differentiation of a population of cells present in rat BM. When these cells are subsequently implanted in inactivated demineralized bone matrix (iDBM) and/or diffusion chambers into older rats they are able to produce bone and cartilage. The population of progenitor cells captured by rhTGF-β1-F2 is distinct from the committed progenitor cells captured by rhBMPs, which exhibit a considerably more differentiated phenotype.  相似文献   

16.
We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was partly due to decreased osteoblast proliferation, as measured by 3H-thymidine incorporation. Hypoxia also sharply reduced osteoblast alkaline phosphatase (ALP) activity and expression of mRNAs for ALP and osteocalcin, suggesting inhibition of differentiation to the osteogenic phenotype. Hypoxia did not increase the apoptosis of osteoblasts but induced a reversible state of quiescence. Transmission electron microscopy revealed that collagen fibrils deposited by osteoblasts cultured in 2% O2 were less organized and much less abundant than in 20% O2 cultures. Furthermore, collagen produced by hypoxic osteoblasts contained a lower percentage of hydroxylysine residues and exhibited an increased sensitivity to pepsin degradation. These data demonstrate the absolute oxygen requirement of osteoblasts for successful bone formation and emphasize the importance of the vasculature in maintaining bone health. We recently showed that hypoxia also acts in a reciprocal manner as a powerful stimulator of osteoclast formation. Considered together, our results help to explain the bone loss that occurs at the sites of fracture, tumors, inflammation and infection, and in individuals with vascular disease or anemia.  相似文献   

17.
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva‐derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK‐8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT‐qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT‐qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90‐positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.  相似文献   

18.
Insulin has been proposed to be an anabolic agent in bone, but the mechanisms underlying insulin effects on osteoblast differentiation are still not clear. To explore the mechanisms of action of insulin on osteoblast growth and differentiation, human osteoblastic cell line‐MG‐63 was used and stimulated by insulin in the presence or absence of ERK inhibitor PD98059, PI3‐K inhibitor LY294002, or inhibitor PD98059 + LY294002. The results showed that insulin positively regulated the expression of its receptor. Insulin stimulated the proliferation of MG‐63 cells in a time‐ and dose‐dependent manner and blockade of both MAPK and PI3K pathways could inhibit the cell proliferation. In addition, ALP activity, the secretion of type I collagen, OC gene expression, and mineralized nodule formation were increased in the insulin treated group, whereas these indicators were decreased after treatment with blocking agents. However, treatment with PI3‐K inhibitor LY294002 significantly reversed the down‐regulation of Runx2 expression and treatment with ERK inhibitor PD98059 remarkably decreased up‐regulation of Osx and IGF‐1 expression after insulin treatment. Therefore, the data obtained from this study suggested that insulin promoted osteoblast proliferation and differentiation through MAPK and PI3K pathway in MG‐63 cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号