首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of thioglycoside glycosyl donors with a disaccharide -D-Gal-(1 3)-D-GalNAc backbone was studied using the glycosylation of a series of suitably protected 3-monohydroxy- and 3,4-dihydroxyderivatives of phenyl 2-azido-2-deoxy-1-thio-- and 1-thio--D-galactopyranosides by galactosyl bromide, fluoride, and trichloroacetimidate. In the reaction with the monohydroxylated glycosyl acceptor, the process of intermolecular transfer of thiophenyl group from the glycosyl acceptor onto the cation formed from the molecule of glycosyl donor dominated. When glycosylating 3,4-diol under the same conditions, the product of the thiophenyl group transfer dominated or the undesired (1 4), rather than (1 3)-linked, disaccharide product formed. The aglycon transfer was excluded when 4-nitrophenylthio group was substituted for phenylthio group in the galactosyl acceptor molecule. This led to the target disaccharide, 4-nitrophenyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio--D-galactopyranoside, in 57% yield. This disaccharide product bears nonparticipating azido group in position 2 of galactosamine and can hence be used to form -glycoside bond. Azido group and the aglycon nitro group were simultaneously reduced in this product and then trichloroacetylated, which led to the -glycosyl donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio-2-trichloroacetamido--D-galactopyranoside, in 62% yield. The resulting glycosyl donor was used in the synthesis of tetrasaccharide asialo-GM1.  相似文献   

2.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

3.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

4.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

5.
W Wang  F Kong 《Carbohydrate research》1999,315(1-2):117-127
The peracetylated hexasaccharide 1,2,4-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6- O- (2,3,4-tri-O-acetyl-6-O-(2,4-di-O-acetyl-3,6-di-O-(2,3,4,6-tetra-O-acety l- beta-D-glucopyranosyl)-beta-D-glucopyranosyl)-beta-D-glucopyranosyl)-alp ha, beta-D-glucopyranose 21 was synthesized in a blockwise manner, employing trisaccharide trichloroacetimidate 2,4-di-O-acetyl-3,6-di-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)- alpha-D-glucopyranosyl trichloroacetimidate 17 as the glycosyl donor, and trisaccharide 4-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6-O-(2,3,4 -tri -O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S)ethylidene-alpha-D-glucopyra nose 18 as the acceptor. The donor 17 and acceptor 18 were readily prepared from trisaccharides 3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6-O-(2,3,4-tri-O-acet yl- 6-O-chloroacetyl-beta-D-glucopyranosyl)-1,2-O-(R,S)ethylidene-alpha-D- glucopyranose 10 and 3,6-di-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranose 11, respectively, which were obtained from rearrangement of orthoesters 3,4-di-O-acetyl-6-O-chloroacetyl-alpha-D-glucopyranose 1,2-(3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranosid-6-yl orthoacetate) 8 and 3,4,6-tri-O-acetyl-alpha-D-glucopyranose 1,2-(3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranosid-6-yl orthoacetate) 9, respectively. The orthoesters were prepared from selective coupling of the disaccharide 3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranose 4 with 'acetobromoglucose' (tetra-O-acetyl-alpha-D-glucopyranosyl bromide) and 6-O-chloroacetylated 'acetobromoglucose', respectively. To confirm the selectivity of the orthoester formation and rearrangement, the disaccharide 4-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S ) ethylidene-alpha-D-glucopyranose 7 was prepared from 4 by selective tritylation, acetylation and detritylation. The title compound, an elicitor-active D-glucohexaose 3-O-(beta-D-glucopyranosyl)-6-O-(6-O-(3,6-di-O-(beta-D-glucopyranosyl)-b eta -D-glucopyranosyl)-beta-D-glucopyranosyl)-alpha,beta-D-glucopyranose 1, was finally obtained by Zemplén deacetylation of 21 in quantitative yield.  相似文献   

6.
tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was readily transformed into the disaccharide glycosyl donor, 3,4,6-tri-O-acetyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-alpha/beta-D-glucopyranosyl trichloroacetimidate, and the disaccharide glycosyl acceptor, tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside. A TMSOTf-catalysed coupling of the acceptor with the donor afforded the respective tetrasaccharide derivative, which can be transformed to chitotetraose. tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was converted into donor 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl trichloroacetimidate. Its coupling with benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, followed by dephenoxyacetylation, gave benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, whose glycosylation furnished, after replacement of the DMM-group by the acetyl moiety and subsequent deprotection, chitohexaose.  相似文献   

7.
A synthesis of alpha-series ganglioside GM1alpha (III(6)Neu5AcGgOse4Cer) containing C20-sphingosine(d20:1) is described. Glycosylation of 2-(trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside with the glucosamine donor ethyl 3-O-acetyl-2-deoxy-4,6-O-[(4-methoxyphenyl)methylene]-2-phthalimido-1-thio-beta-D-glucopyranoside furnished a beta-(1-->4)-linked trisaccharide. Reductive cleavage of the p-methoxybenzylidene group followed by intramolecular inversion of its triflate afforded the desired trisaccharide, which was transformed into a trisaccharide acceptor via removal of the phthaloyl and O-acetyl groups followed by N-acetylation. A tetrasaccharide acceptor was obtained by glycosylation of the trisaccharide acceptor with dodecyl 2,3,4,6-tetra-O-benzoyl-1-thio-beta-D-galactopyranoside, followed by removal of the p-methoxybenzyl group. Coupling of the tetrasaccharide acceptor with ethyl (methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-1-thio-5-trichloroacetamido-D-glycero-D-galacto-2-nonulopyranosid)onate and subsequent radical reduction gave the desired GM1alpha saccharide derivative, which was coupled with (2S,3R,4E)-2-azido-3-O-benzoyl-4-eicosene-1,3-diol after conversion into the imidate.  相似文献   

8.
We are investigating the synthesis of thioanalogues of nodulation factors that will be resistant to degradation by chitinases. To study the influence of our protecting group strategy, the glycosylation of 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside (7) with two trichloroacetimidate glycosyl donors carrying an azido group at C-2 and either benzyl or benzoyl protecting groups on O-3 and O-4 was first attempted under catalysis with BF(3).Et(2)O in toluene. While glycosylation with the benzoylated glycosyl donor gave only a poor yield (27%) of the disaccharide, a similar reaction with the benzylated donor gave the corresponding disaccharide in good yield (77%). Although both products were obtained as anomeric mixtures, the benzylated donor led to improved stereoselectivity in favor of the desired beta-anomer (alpha:beta 3:7). Based on these results, a novel thiotrisaccharide was synthesized via the coupling of 7 with 6-O-acetyl-4-S-(3,4,6-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-beta-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-4-thio-alpha-D-glucopyranosyl trichloroacetimidate (25) also newly synthesized. After optimization of the reaction conditions, the desired thiotrisaccharide 4-O-[6-O-acetyl-4-S-(3,4,6-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-beta-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-4-thio-beta-D-glucopyranosyl]-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside (26beta) was obtained in 57% yield. These conditions led to an anomeric mixture in favor of the desired beta-anomer (alpha:beta 1:4.7) that was separated from the alpha-anomer by normal-phase HPLC on a PrepNova Pack(R) silica gel cartridge. The work described here shows that thiodisaccharide glycosyl donors behave quite differently from the analogous O-disaccharide used previously to synthesize nodulation factors.  相似文献   

9.
3,4,6-Tri-O-acetyl-D-galactal was transformed into methyl 6-O-acetyl-2-azido-4-O-benzyl-2-deoxy-beta-D-galactopyranoside and its 4-O-acetyl-6-O-benzyl analogue, each of which was glycosylated with activated, O-acetylated derivatives of methyl D-glucopyranosyluronate. The resulting beta-(1----3)-linked disaccharide derivatives were each reductively N-acetylated, hydrogenolysed, O-sulfated, and saponified to afford the disodium salts of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside and the 6-O-sulfo analogue. D-Galactal was also transformed into activated derivatives of 2-azido-3,6-di-O-benzyl-2-deoxy-D-galactopyranose and their 3,4-di-O-benzyl analogues with various substituents at O-4 and O-6. These glycosyl donors were condensed with 6-O-protected derivatives of methyl 2,3-di-O-benzyl-beta-D-glucopyranoside to give the beta-(1----4)-linked disaccharide derivatives, which were selectively deprotected, then oxidised at C-6 of the gluco unit, reductively N-acetylated, selectively deprotected, O-sulfated at C-4 or C-6 of the galacto unit, and hydrogenolysed to give the disodium salts of methyl 4-O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-beta-D- glucopyranosiduronic acid and the 6-O-sulfo analogue.  相似文献   

10.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

11.
The disaccharide 2-(p-aminophenyl)ethyl 4-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-2,3-diacetamido-2 ,3-dideoxy-alpha-D-mannopyranoside uronate, which is assumed to be a partial structure of the Bordetella pertussis polysaccharide, was synthesized starting from D-glucose and D-glucosamine, respectively. The major synthetic transformations were conversion of D-glucosamine into the donor ethyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-thio-beta-D-glucopyranoside and conversion of glucose, by a sequence involving 2,3-epoxide formation/opening, nucleophilic triflate displacement in the 3-position, and necessary protecting group manipulations, into the acceptor 2-(p-trifluoroacetamidophenyl)ethyl 6-O-benzyl-2,3-diazido-2,3-dideoxy-alpha-D-mannopyranoside. Coupling of the donor and acceptor units promoted by dimethyl(methylthio)sulfonium triflate followed by selective oxidation of the 6'-position and deprotection gave the target disaccharide.  相似文献   

12.
p-Nitrophenyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl bromide, the product deprotected, and the disaccharide glycoside converted into p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-4-O-beta-D-galactopyranosyl-beta- D-glucopyranoside. p-Nitrophenyl 3-O-benzoyl-4,6-di-O-benzylidene-alpha-D-mannopyranoside was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl bromide, and the product was deprotected, to yield p-nitrophenyl 2-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-alpha-D-mannopyranoside. p-Nitrophenyl 2-acetamido-3,4-di-O-benzoyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide, and, after reduction, trifluoroacetylation, and deprotection, p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-6-O-alpha-L-fucopyranosyl-beta-D-glucopyranoside was obtained.  相似文献   

13.
O-(2-Deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)- O-(beta-D- glucopyranosyluronic acid)-(1----4)-1,6-anhydro-2-deoxy-2-sulfamido-6-O-sulfo-beta-D-gl ucopyranose pentasodium salt (14) was synthesized as a heparin-related oligosaccharide. The glycosyl acceptor (derived from cellobiose) and a glycosyl donor, 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide, were coupled in the presence of mercuric bromide and molecular sieves 4A to afford a 69% yield of fully protected trisaccharide, namely, O-(6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1 ----4)- O-(methyl 2,3-di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-3-O-acetyl- 1,6-anhydro-2 - azido-2-deoxy-beta-D-glucopyranose (10), which was converted into the partially sulfated trisaccharide 14. Compound 10 also underwent acetolysis to afford the glycosyl acetate, for further elongation of the glycosyl chain.  相似文献   

14.
Synthesis of disaccharide fragments of dermatan sulfate   总被引:2,自引:0,他引:2  
Condensation of crystalline methyl 2-azido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranoside with methyl (2,3,4-tri-O-acetyl-alpha-L-idopyranosyl bromide)uronate in dichloromethane, in the presence of silver triflate and molecular sieve, provided 54% of methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-alpha-L-idopyranosyluronate)-beta-D-galactopyranoside . The use of methyl (2,3,4-tri-O-acetyl-alpha-L-idopyranosyl trichloroacetimidate)uronate as glycosyl donor, in the presence of trimethylsilyl triflate, improved the yield to 68%. Regioselective opening of the benzylidene group with sodium cyanoborohydride followed successively by O-sulfation with the sulfur trioxide-trimethylamine complex, saponification, catalytic hydrogenolysis and selective N-acetylation gave the disodium salt of methyl 2-acetamido-2-deoxy-3-O-(alpha-L-idopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside. Condensation of methyl 2-azido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranoside with methyl (2,3,4-tri-O-acetyl-alpha-D-glucopyranosyl bromide)uronate in dichloromethane, in the presence of silver triflate and molecular sieve, gave methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyluronate)-beta-D-galactopryano side in 85% yield. The sequence already described then gave the disodium salt of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside.  相似文献   

15.
Protected sialo-containing trisaccharides, fragments of oligosaccharide chains of mucin glycoproteins, were synthesized. Regioselective sialylation of the primary hydroxyl group of (3-fluoroacetamidopropyl)-2-azido-2-deoxy-3-O-(2,3,4,6-tetra-O-ben zyl)-alpha -D-galactopyranosyl)-alpha-D-galactopyranoside with methyl ester of peracetyl-beta-ethylthioglycoside of N-acetylneuraminic acid in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid (or its trimethylsilyl ester) yielded 39 and 25% of alpha- and beta-sialyl-(2-->6)biosides, respectively. Catalytic hydrogenolysis of the azide and benzyl groups of the alpha-anomer followed by N- and O-acetylation gave target trifluoroacetamidopropyl glycoside, Neu5Ac(alpha 2-->6)[Gal(alpha 1-->3)]GalNAc alpha-OSp, as a peracetate. An analogous coupling of the sialyl donor with (3-fluoroacetamidopropyl)-2-acetamido-2-deoxy-3-O- (2,3,4,6-tetra-O-acetyl)-beta-D-galactopyranosyl)-alpha-D-galactopyranos ide affords acetylated trifluoroacetamidopropyl glycoside Neu5Ac(alpha 2-->6)[Gal(beta 1-->3)]GalNAc alpha-OSp in a yield of 15% and the corresponding Neu5Ac(beta 2-->6)-anomer in a yield of 12%. After O-deacetylation and N-detrifluoroacetylation, these sialylbiosides can be used as ligands in preparing neoglycoconjugates.  相似文献   

16.
2-O-[4-O-(2-Acetamido-2-deoxy-beta-D-mannopyranosyl)-alpha-D- glucopyranosyl]-alpha,beta-L-rhamnopyranose, a structural component of the capsular polysaccharide of Streptococcus pneumoniae type 19F, has been synthesized by sequential glycosylation reactions using the glycosyl acceptor 2,2,2-trichloroethyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (prepared from the known 2-O-acetyl-3,4-di-O-benzyl-alpha-L-rhamnopyranosyl chloride), and the glycosyl donors 4-O-acetyl-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl chloride and 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-alpha-D-mannopyranosyl bromide (prepared in seven steps from the known methyl 2-azido-4,6-O-benzylidene-2-deoxy-alpha-D-altropyranoside). The corresponding 8-(methoxycarbonyl)octyl glycoside has also been synthesized, by coupling of 8-(methoxycarbonyl)octyl trifluoromethanesulfonate and the sodium salt of 2-O-[4-O-(2-acetamido-4,6-di-O-acetyl-3-O-benzyl-2-deoxy-beta-D- mannopyranosyl)-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl]-3,4-di-O- benzyl-alpha,beta-L-rhamnopyranose.  相似文献   

17.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

18.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl)-beta- D-glucopyranoside with ethyl 2,3,4,6-tetra-O-benzyl- and ethyl 3-O-acetyl-2,4,6-tri-O-benzyl-1-thio-alpha-D-galactopyranoside in the presence of methyl trifluoromethanesulfonate led to trisaccharide 2-azidoethyl (2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-(1-->4)- (2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl)-(1-->4)2,3,6-tri-O- benzoyl-beta-D-glucopyranoside and its 3"-O-acetylated analogue, 2-azidoethyl (3-O-acetyl-2,4,6-tri-O-benzyl- alpha-D-galactopyranosyl)-(1-->4)-(2,3,6-tri-O-benzoyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside, in yields of 85 and 83%, respectively. Deacetylation of the latter compound and subsequent glycosylation with 4-trichloroacetamidophenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D- galactopyranoside and 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in the corresponding selectively protected derivatives of tetrasaccharide GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc beta-OCH2CH2N3 and pentasaccharide Gal(beta 1-->3)GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc beta-OCH2CH2N3 in 88 and 73% yields, respectively. Removal of O-protecting groups, substitution of acetyl group for N-trichloroacetyl group, and reduction of the aglycone azide group resulted in the target 2-aminoethyl globo-tri-, -tetra-, and -pentasaccharide, respectively.  相似文献   

19.
The known methyl 2-O-acetyl-3,4-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (3) was converted to the corresponding 5-methoxycarbonylpentyl glycoside 4 which was deacetylated. The product 5 was used as the initial glycosyl acceptor to construct two trirhamnoside glycosyl acceptors having HO-3(III) flanked by either benzoyl or benzyl groups, compounds 10 and 29, respectively [fully protected, except HO-3(III), alpha-L-Rha-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-1-O-(CH2)5COOCH3]. When these were glycosylated with ethyl 4-azido-3-O-benzyl-4,6-dideoxy-2-O-bromoacetyl-1-thio-beta-D-glucopyranoside (18), only the benzylated glycosyl acceptor 29 gave good yield of the desired tetrasaccharide 30. The alpha- and beta-linked products, together with the corresponding orthoester 23, were formed in almost equal amount when glycosylation of 10 was performed with the glycosyl donor carrying the 2-O-bromoacetyl protecting group. Deprotection at O-2 of 30, followed by further functionalization of the molecule and global deprotection, gave the 5-methoxycarbonylpentyl glycoside of the title tetrasaccharide, beta-Ant-(1-->3)-alpha-L-Rha-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha (35). Except for differences due to presence of the anomeric 5-methoxycarbonylpentyl group, the fully assigned NMR spectra of glycoside 35 were found to be virtually identical to those reported for the parent tetrasaccharide isolated from Bacillus anthracis exosporium, thus proving the correct structure assigned to the naturally occurring substance. All theoretically possible structural fragments of 35, as well as analog of 35 lacking the 2-O-methyl group at the terminal 4,6-dideoxyglucosyl residue, compound 40, were also synthesized. Tetrasaccharide 35, its beta-linked and non-methylated analogs 2 and 40, respectively, as well as the trirhamnoside fragment of 35, glycoside 12, were further functionalized and conjugated to BSA using squaric acid chemistry, to give neoglycoconjugates with a predetermined carbohydrate-protein ratio of approximately 3 and approximately 6.  相似文献   

20.
As part of a continuing study aimed to achieve improved monoclonal antibodies against carcinoembryonic antigen (CEA) carbohydrate fragments, the synthesis of a sialyl-(2-->6)-lactosamine trisaccharide with a 5-amino-3-oxapentyl spacer group at C-1I has been developed. Two different routes to access this target are described. For this purpose 5-azido-3-oxapentyl 6-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside (4) was selectively beta-galactosylated in 81% yield using the crystalline 2,3-di-O-acetyl-4,6-O-benzylidene-alpha-D-galactopyranosyl trichloroacetimidate as the donor, taking advantage of the bulky phthalimido group at C-2 of 4. On the other hand, galactosylation of the suitable protected acceptor 5-azido-3-oxapentyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside with the crystalline 2,3-di-O-acetyl-4,6-O-benzylidene-alpha-D-galactosyl bromide renders the corresponding disaccharide in a moderate 58% yield. Despite the fact that the first strategy, unlike the second one, requires a hydrazinolysis-acetylation reaction at the disaccharide stage, it was found to be more convenient to access the disaccharide acceptor. Sialylation was performed using a thiophenyl donor under an NIS-TfOH activation procedure in acetonitrile to give a mixture of alpha and beta trisaccharides in 49 and 16% yields, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号