首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 83 kDa protective antigen (PA(83)) component of anthrax toxin, after proteolytic activation, self-associates to form ring-shaped heptamers ([PA(63)](7)) that bind and aid delivery of the Edema Factor (EF) and Lethal Factor (LF) components to the cytosol. Here we show using fluorescence (F?rster) resonance energy transfer that a molecule of [PA(63)](7) can bind EF and LF simultaneously. We labeled EF and LF with an appropriate donor/acceptor pair and found quenching of the donor and an increase in sensitized emission of the acceptor when, and only when, a mixture of the labeled proteins was combined with [PA(63)](7). Addition of unlabeled PA(63)-binding domain of LF to the mixture competitively displaced labeled EF and LF, causing a loss of energy transfer. In view of the known maximum occupancy of 3 ligand molecules per [PA(63)](7), these findings indicate that PA, EF, and LF can form mixtures of liganded toxin complexes containing both EF and LF.  相似文献   

2.
Anthrax protective antigen (PA, 83 kDa), a pore-forming protein, upon protease activation to 63 kDa (PA(63)), translocates lethal factor (LF) and edema factor (EF) from endosomes into the cytosol of the cell. The relatively small size of the heptameric PA(63) pore (approximately 12 angstroms) raises questions as to how large molecules such as LF and EF can move through the pore. In addition, the reported high binding affinity between PA and EF/LF suggests that EF/LF may not dissociate but remain complexed with activated PA(63). In this study, we found that purified (PA(63))(7)-LF complex exhibited biological and functional activities similar to the free LF. Purified LF complexed with PA(63) heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage cells. Electrophysiological studies of the complex showed strong rectification of the ionic current at positive voltages, an effect similar to that observed if LF is added to the channels formed by heptameric PA(63) pore. Complexes of (PA(63))(7)-LF found in the plasma of infected animals showed functional activity. Identifying active complex in the blood of infected animals has important implications for therapeutic design, especially those directed against PA and LF. Our studies suggest that the individual toxin components and the complex must be considered as critical targets for anthrax therapeutics.  相似文献   

3.
Anthrax toxin consists of protective antigen (PA), and lethal (LF) and edema (EF) factors. A 83 kDa PA monomer (PA83) precursor binds to the cell receptor. Furin-like proprotein convertases (PCs) cleave PA83 to generate cell-bound 63 kDa protein (PA63). PA63 oligomerizes to form a ring-shaped heptamer that binds LF-EF and facilitates their entry into the cells. Several additional PCs, as opposed to furin alone, are capable of processing PA83. Following the incomplete processing of the available pool of PA83, the functional heptamer includes both PA83 and PA63. The available structures of the receptor-PA complex imply that the presence of either one or two molecules of PA83 will not impose structural limitations on the formation of the heptamer and the association of either the (PA83)(1)(PA63)(6) or (PA83)(2)(PA63)(5) heteroheptamer with LF-EF. Our data point to the intriguing mechanism of anthrax that appears to facilitate entry of the toxin into the cells which express limiting amounts of PCs and an incompletely processed PA83 pool.  相似文献   

4.
Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA63, oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α1 loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process.  相似文献   

5.
The anthrax toxin complex consists of three different molecules, protective antigen (PA), lethal factor (LF), and edema factor (EF). The activated form of PA, PA(63), forms heptamers that insert at low pH in biological membranes forming ion channels and that are necessary to translocate EF and LF in the cell cytosol. LF and EF are intracellular active enzymes that inhibit the host immune system promoting bacterial outgrowth. Here, PA(63) was reconstituted into artificial lipid bilayer membranes and formed ion-permeable channels. The heptameric PA(63) channel contains a binding site for LF on the cis side of the channel. Full-size LF was found to block the PA(63) channel in a dose- and ionic-strength-dependent way with half-saturation constants in the nanomolar concentration range. The binding curves suggest a 1:1 relationship between (PA(63))(7) and bound LF that blocks the channel. The presence of a His(6) tag at the N-terminal end of LF strongly increases the affinity of LF toward the PA(63) channel, indicating that the interaction between LF and the PA(63) channel occurs at the N terminus of the enzyme. The LF-mediated block of the PA(63)-induced membrane conductance is highly asymmetric with respect to the sign of the applied transmembrane potential. The result suggested that the PA(63) heptamers contain a high-affinity binding site for LF inside domain 1 or the channel vestibule and that the binding is ionic-strength-dependent.  相似文献   

6.
Protective antigen (PA), the receptor-binding moiety of anthrax toxin, contains two calcium atoms buried within domain 1(') (amino acid residues 168-258). We showed that these ions are stably bound and exchange with free 45Ca(2+) only slowly (t(1/2) approximately 4.0 h). Dissociation is the rate-limiting step. PA(63), the heptameric prepore form of PA, showed a slightly higher exchange rate than the monomeric intact protein. Exchange by this form was retarded by binding of the enzymatic moieties of the toxin, but was unaffected by reducing the pH to 5.0, a condition known to trigger conversion of the prepore to the pore form. These results are consistent with the hypothesis that bound Ca(2+) within PA plays primarily a structural role, maintaining domain 1(') in a conformation that allows PA(63) to oligomerize and bind the enzymatic moieties of the toxin.  相似文献   

7.
Zhang S  Cunningham K  Collier RJ 《Biochemistry》2004,43(20):6339-6343
Heptameric anthrax protective antigen (termed prepore), which assembles at the mammalian cell surface, competitively binds edema factor (EF) and/or lethal factor (LF). It then transports them to an acidic intracellular compartment and mediates their translocation across the membrane to the cytosol. Steric constraints limit to three the number of molecules of EF and/or LF that can bind simultaneously to prepore. To determine whether the number of ligand molecules bound per heptamer affects the efficiency of translocation, we measured the low-pH-triggered translocation of the radiolabeled protective antigen (PA(63))-binding domain of LF ((35)S-LF(N)) across the plasma membrane of CHO-K1 cells as a function of the degree of saturation of the prepore. The fraction translocated remained constant at approximately 0.4 as (35)S-LF(N) was varied from nil through saturating concentrations. The same constant value was observed when we held (35)S-LF(N) at a saturating concentration and varied the number of functional ligand sites per prepore by changing the ratio of wild-type PA to a ligand-binding mutant. Thus, prepore containing only a single ligand-binding site is capable of translocating its cargo as efficiently as one containing multiple binding sites. The results as a whole imply that heptamers with one, two, or three ligands bound translocate their ligands with the same efficiency, indicating that each ligand molecule is translocated independently from the others.  相似文献   

8.
Anthrax toxin (AT), secreted by Bacillus anthracis, is a three-protein cocktail of lethal factor (LF, 90 kDa), edema factor (EF, 89 kDa), and the protective antigen (PA, 83 kDa). Steps in anthrax toxicity involve (1) binding of ligand (EF/LF) to a heptamer of PA63 (PA63h) generated after N-terminal proteolytic cleavage of PA and, (2) following endocytosis of the complex, translocation of the ligand into the cytosol by an as yet unknown mechanism. The PA63h.LF complex was directly visualized from analysis of images of specimens suspended in vitrified buffer by cryo-electron microscopy, which revealed that the LF molecule, localized to the nonmembrane-interacting face of the oligomer, interacts with four successive PA63 monomers and partially unravels the heptamer, thereby widening the central lumen. The observed structural reorganization in PA63h likely facilitates the passage of the large 90 kDa LF molecule through the lumen en route to its eventual delivery across the membrane bilayer.  相似文献   

9.
Immunofluorescence and other methods have been used to probe the self-assembly and internalization of the binary toxin, anthrax lethal toxin (LeTx), in primary murine macrophages. Proteolytic activation of protective antigen (PA; 83 kDa, the B moiety of the toxin) by furin was the rate-limiting step in internalization of LeTx and promoted clearance of PA from the cell surface. A furin-resistant form of PA remained at the cell surface for at least 90 min. Oligomerization of receptor-bound PA63, the 63 kDa active fragment of PA, was manifested by its conversion to a pronase-resistant state, characteristic of the heptameric prepore form in solution. That oligomerization of PA63 triggers toxin internalization is supported by the observation that PA20, the complementary 20 kDa fragment of PA, inhibited clearance of nicked PA. The PA63 prepore, with or without lethal factor (LF), cleared slowly from the cell surface. These studies show that proteolytic cleavage of PA, in addition to permitting oligomerization and LF binding, also promotes internalization of the protein. The relatively long period of activation and internalization of PA at the cell surface may reflect adaptation of this binary toxin that maximizes self-assembly.  相似文献   

10.
Anthrax toxin consists of three components: the enzymatic moieties edema factor (EF) and the lethal factor (LF) and the receptor-binding moiety protective antigen (PA). These toxin components are released from Bacillus anthracis as unassociated proteins and form complexes on the surface of host cells after proteolytic processing of PA into PA20 and PA63. The sequential order of PA heptamerization and ligand binding, as well as the exact mechanism of anthrax toxin entry into cells, are still unclear. In the present study, we provide direct evidence that PA63 monomers are sufficient for binding to the full length LF or its LF-N domain, though with lower affinity with the latter. Therefore, PA oligomerization is not a necessary condition for LF/PA complex formation. In addition, we demonstrated that the PA20 directly interacts with the LF-N domain. Our data points to an alternative process of self-assembly of anthrax toxin on the surface of host cells.  相似文献   

11.
The binding of the Bacillus anthracis protective antigen (PA) to the host cell receptor is the first step toward the formation of the anthrax toxin, a tripartite set of proteins that include the enzymatic moieties edema factor (EF), and lethal factor (LF). PA is cleaved by a furin‐like protease on the cell surface followed by the formation of a donut‐shaped heptameric prepore. The prepore undergoes a major structural transition at acidic pH that results in the formation of a membrane spanning pore, an event which is dictated by interactions with the receptor and necessary for entry of EF and LF into the cell. We provide direct evidence using 1‐dimensional 13C‐edited 1H NMR that low pH induces dissociation of the Von‐Willebrand factor A domain of the receptor capillary morphogenesis protein 2 (CMG2) from the prepore, but not the monomeric full length PA. Receptor dissociation is also observed using a carbon‐13 labeled, 2‐fluorohistidine labeled CMG2, consistent with studies showing that protonation of His‐121 in CMG2 is not a mechanism for receptor release. Dissociation is likely caused by the structural transition upon formation of a pore from the prepore state rather than protonation of residues at the receptor PA or prepore interface.  相似文献   

12.
The significant threat posed by biological agents (e.g. anthrax, tetanus, botulinum, and diphtheria toxins) (Inglesby, T. V., O'Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M. T., Parker, G., Perl, T. M., Russell, P. K., and Tonat, K. (2002) J. Am. Med. Assoc. 287, 2236-2252) requires innovative technologies and approaches to understand the mechanisms of toxin action and to develop better therapies. Anthrax toxins are formed from three proteins secreted by fully virulent Bacillus anthracis, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). Here we present electrophysiological measurements demonstrating that full-length LF and EF convert the current-voltage relationship of the heptameric PA63 ion channel from slightly nonlinear to highly rectifying and diode-like at pH 6.6. This effect provides a novel method for characterizing functional toxin interactions. The method confirms that a previously well characterized PA63 monoclonal antibody, which neutralizes anthrax lethal toxin in animals in vivo and in vitro, prevents the binding of LF to the PA63 pore. The technique can also detect the presence of anthrax lethal toxin complex from plasma of infected animals. The latter two results suggest the potential application of PA63 nanopore-based biosensors in anthrax therapeutics and diagnostics.  相似文献   

13.
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.  相似文献   

14.
Proteolytic activation of receptor-bound protective antigen (PA) at the cell surface removes PA20, allowing PA63 to oligomerize and form a ring-shaped heptameric prepore. The prepore binds edema factor (EF) and lethal factor (LF) and, after endocytosis and trafficking of the complex to an acidic, vesicular compartment, it undergoes membrane insertion and mediates translocation of EF/LF to the cytosol. Data from membrane conductance experiments support a model of membrane insertion in which the 2β2–2β3 loop of PA, which is disordered in native PA and the prepore, forms a 14-stranded transmembrane β-barrel. Recent studies on the process of prepore-to-pore conversion and our current understanding of the mechanism of pH-dependent translocation will be described.  相似文献   

15.
A panel of Fabs that neutralize anthrax toxin in vitro was selected from libraries generated from human donors vaccinated against anthrax. At least two of these antibodies protect rats from anthrax intoxication in vivo. Fabs 83K7C and 63L1D bind with subnanomolar affinity to protective antigen (PA) 63, and Fab 63L1D neutralizes toxin substoichiometrically, inhibits lethal factor (LF) interaction with PA63 and binds to a conformational epitope formed by PA63.  相似文献   

16.
Elliott JL  Mogridge J  Collier RJ 《Biochemistry》2000,39(22):6706-6713
Bacillus anthracis secretes three proteins, which associate in binary combinations to form toxic complexes at the surface of mammalian cells. Receptor-bound protective antigen (PA) is proteolytically activated, yielding a 63 kDa fragment (PA(63)). PA(63) oligomerizes into heptamers, which bind edema factor (EF) or lethal factor (LF) to form the toxic complexes. We undertook a quantitative analysis of the interactions of EF with PA(63) by means of surface plasmon resonance (SPR) measurements. Heptameric PA(63) was covalently bound by amine coupling to an SPR chip, or noncovalently bound via a C-terminal hexahistidine tag on the protein to Ni(2+)nitrilotriacetate groups on the chip. Values of k(on) and k(off) for EF at 23 degrees C were approximately 3 x 10(5) M(-)(1) s(-)(1) and (3-5) x 10(-)(4) s(-)(1), respectively, giving a calculated K(d) of (1-2) x 10(-)(9) M. A similar value of K(d) (7 x 10(-)(10) M) was obtained when we measured the binding of radiolabeled EF to receptor-bound PA(63) on the surface of L6 cells (at 4 degrees C). Each of these analyses was also performed with LF and LF(N) (the N-terminal 255 residues of LF), and values obtained were comparable to those for EF. The similarity in the dissociation constants determined by SPR and by measurements on the cell surface suggests that the presence of the receptor does not play a large role in the interaction between PA(63) and EF/LF.  相似文献   

17.
Anthrax toxin is a complex of protective antigen (PA, 735 aa), lethal factor (LF, 776 aa), and edema factor (EF, 767 aa). PA binds to cell surface receptors and is cleaved by cell surface proteases into PA63, while LF and EF compete for binding to PA63. The PA63-LF/EF complex is internalized into the cytosol and causes different pathogenic responses in animals and cultured cells. 1-300 amino acid residues of LF have been viewed as the region responsible for the high affinity binding of LF to PA. Amino acid analysis of LF and EF revealed a common stretch of 7 amino acids (147VYYEIGK153). In the present study, each amino acid of this stretch was replaced by alanine at a time. Y148A, Y149A, I151A, and K153A mutants were found to be deficient in their ability to lyse J774A.1 cells and their binding ability to PA63 was drastically reduced. We propose that these four amino acids play a crucial role in the process of binding of LF to PA63.  相似文献   

18.
炭疽毒素及其细胞受体的研究进展   总被引:1,自引:0,他引:1  
炭疽毒素由 3种蛋白组成 :保护性抗原 (protectiveantigen ,PA)、致死因子 (lethalfactor,LF)和水肿因子 (edemafactor ,EF) .综述炭疽毒素研究的最新进展 .主要介绍炭疽毒素的关键致病因子———LF的结构与功能 ,炭疽毒素膜转运成分PA的结构及其受体 (anthraxtoxinreceptor ,ATR)和其cDNA克隆的结构 ,并讨论了在炭疽的治疗、预防和毒素在肿瘤治疗中的可能应用 .  相似文献   

19.

Background

Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood.

Methodology

Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions.

Conclusions

We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.  相似文献   

20.
The 63-kDa fragment of the protective antigen (PA) component of anthrax toxin forms a heptameric channel, (PA63)7, in acidic endosomal membranes that leads to the translocation of edema factor (EF) and lethal factor (LF) to the cytosol. It also forms a channel in planar phospholipid bilayer membranes. What role does this channel play in the translocation of EF and LF? We report that after the 263-residue N-terminal piece of LF (LFN) binds to its receptor on the (PA63)7 channel and its N-terminal end enters the channel at small positive voltages to block it, LFN is translocated through the channel to the opposite side at large positive voltages, thereby unblocking it. Thus, all of the translocation machinery is contained in the (PA63)7 channel, and translocation does not require any cellular proteins. The kinetics of this translocation are S-shaped, voltage-dependent, and occur on a timescale of seconds. We suggest that the translocation process might be explained simply by electrophoresis of unfolded LFN through the channel, but the refolding of the N-terminal half of LFN as it emerges from the channel may also provide energy for moving the rest of the molecule through the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号