首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural, biochemical, and immunological comparisons of nodulesfrom ten species of plants were made to determine if a correlationexists between nodule structure, ureide production, urate oxidaseactivity, and antigenic similarity in urate oxidase. In specieswith high urate oxidase activity and cross-reaction with soybeananti-urate oxidase [soybean (Glycine max), green bean (Phaseolusvulgaris), mung bean (Vigna radiata), cowpea (Vigna unguiculata)],the nodules were determinate and contained numerous interstitialcells, interspersed among the infected cells. Within the interstitialcells of the ureide producing nodules numerous peroxisomes werenoted and these peroxisomes appear to be structurally similar,viz. a large electron opaque core surrounded by a less electronopaque rim. Although hemp sesbania (Sesbania exaltata) noduleswere similar in ultrastructure to other ureide producers withdetectable urate oxidase activity, no cross-reactivity was observedwith anti-soybean urate oxidase. Amide producing nodules eithercontained no interstitial cells [e.g. Indian jointvetch (Aeschynomeneindica), showy crotalaria (Crotalaria spectabilis)} or interstitialcells with few peroxisomes [e.g. alfalfa (Medicago saliva),broad bean (Vicia faba), pea (Pisum sativum)] with little urateoxidase activity, exhibiting no cross-reaction with soybeananti-urate oxidase. These data indicate that the urate oxidasein most ureide producing nodules is very similar and, structurally,ureide producing nodules are organized in a specialized wayto carry out ureide assimilation in the uninfected interstitialcells. (Received June 19, 1986; Accepted January 12, 1987)  相似文献   

2.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

3.
Peterson RB 《Plant physiology》1989,90(4):1322-1328
The partitioning of noncyclic photosynthetic electron transport between net fixation of CO2 and collective O2-dependent, dissipative processes such as photorespiration has been examined in intact leaf tissue from Nicotiana tabacum. The method involves simultaneous application of CO2 exchange and pulse modulated fluorescence measurements. As either irradiance or CO2 concentration is varied at 1% O2 (i.e. absence of significant O2-dependent electron flow), the quantum efficiency of PSII electron transport (se) with CO2 as the terminal acceptor is a linear function of the ratio of photochemical:nonphotochemical fluorescence quenching coefficients (i.e. qQ:qNP). When the ambient O2 concentration is raised to 20.5% or 42% the qQ:qNP is assumed to predict the quantum efficiency of total noncyclic electron transport (′se). A factor which represents the proportion of electron flow diverted to the aforementioned dissipative processes is calculated as (′sese)/′se where se is now the observed quantum efficiency of electron transport in support of net fixation of CO2. Examination of changes in electron allocation with CO2 and O2 concentration and irradiance at 25°C provides a test of the applicability of the Rubisco model to photosynthesis in vivo.  相似文献   

4.
[14C]Methylamine (MA; an analog of ammonia) was used to investigate ammonia transport across the bacteroid and peribacteroid membranes (PBM) from soybean (Glycine max) root nodules. Free-living Bradyrhizobium japonicum USDA110 grown under nitrogen-limited conditions showed rapid MA uptake with saturation kinetics at neutral pH, indicative of a carrier. Exchange of accumulated MA for added ammonia occurred, showing that the carrier recognized both NH4+ and CH3NH3+. MA uptake by isolated bacteroids, on the other hand, was very slow at low concentrations of MA and increased linearly with increasing MA concentration up to 1 millimolar. Ammonia did not inhibit MA by isolated bacteroids and did not cause efflux of accumulated MA. PBM-enclosed bacteroids (peribacteroid units [PBUs]) were qualitatively similar to free bacteroids with respect to MA transport. The rates of uptake and efflux of MA by PBUs were linearly dependent on the imposed concentration gradient and unaffected by NH4Cl. MA uptake by PBUs increased exponentially with increasing pH, confirming that the rate increased linearly with increasing CH3NH2 concentration. The results are consistent with other evidence that transfer of ammonia from the nitrogen-fixing bacteroid to the host cytosol in soybean root nodules occurs solely by simple diffusion of NH3 across both the bacteroid and peribacteroid membranes.  相似文献   

5.
Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study, we analyzed the AMF community composition in the roots of three nonlegumes and in the roots and root nodules of three legumes growing in a natural dune grassland. We amplified a portion of the small-subunit ribosomal DNA and analyzed it by using restriction fragment length polymorphism and direct sequencing. We found differences in AMF communities between legumes and nonlegumes and between legume roots and root nodules. Different plant species also contained different AMF communities, with different AMF diversity. One AMF sequence type was much more abundant in legumes than in nonlegumes (39 and 13%, respectively). Root nodules contained characteristic AMF communities that were different from those in legume roots, even though the communities were similar in nodules from different legume species. One AMF sequence type was found almost exclusively in root nodules. Legumes and root nodules have relatively high nitrogen concentrations and high phosphorus demands. Accordingly, the presence of legume- and nodule-related AMF can be explained by the specific nutritional requirements of legumes or by host-specific interactions among legumes, root nodules, and AMF. In summary, we found that AMF communities vary between plant functional groups (legumes and nonlegumes), between plant species, and between parts of a root system (roots and root nodules).  相似文献   

6.
Transport of Nitrate and Calcium into Legume Root Nodules   总被引:5,自引:0,他引:5  
Nitrate transport into nodulated plants of soybean (Glycinemax), cowpea (Vigna unguiculata) and faba bean (Vicia faba)was investigated. Nitrate entering the root system of soybeandid not pass out of the vascular system into nodular tissuesin detectable quantities. On the other hand, nitrate could passfrom soil through the outer surface of nodules but did not penetratethe infected tissue. Similarly, nitrate was restricted to corticaltissues of cowpea and faba bean. Thus, nitrate cannot inhibitnitrogen fixation as a result of reduction to nitrite by nitratereductase within the bacteroid zone. These results are, however,consistent with an effect of nitrate on an oxygen diffusionresistance located in the nodule cortex. Unlike nitrate, measurable quantities of 45calcium were transportedvia the xylem into infected and cortical tissues of soybeannodules: it also passed from the soil into the free space ofthe nodule cortex. Key words: Nitrate, legume nodules, calcium  相似文献   

7.
The study on localization of ATP-ase in root nodules of Astragalus sinicus and Sesbania cannabina shows that the particles of lead phosphate precipitates resulting from the reaction of ATP hydrolytic enzyme are distributed in cell wall, plasmolemma, cytoplasm and peribacteroid membranes etc. of the host cells. This ATP-ase plays an important role in the transportation and absorption of substances. Owing to the need of photosynthates provided for the nitrogen fixation of root nodules, the active reaction of ATP-ase in bacteroids varies with their developments. The numbers of bacteroids having ATP hydrolytic enzyme in young root nodules are significantly less than those in senescent nodules. Possibly, this active reaction is related with the physiological function of nitrogen fixation of bacteroids at different development stages.  相似文献   

8.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

9.
The movement and metabolism of [8-14C]zeatin applied to theroot nodules of Alnus glutinosa (L.) Gaertn, was investigated.Twenty-four hours after the start of uptake, zeatin and a numberof its metabolites were detected in all parts of the plant.The major radioactive compounds present in a cationic fractionof different plant parts at this time co-chromatographed onSephadex LH20 with zeatin (in nodules, stems, and leaves) andwith zeatin riboside (in roots, stems, and buds). In the roots,in addition to the peak co-chromatographing with zeatin riboside,there was also a prominent unidentified polar peak. The presence of zeatin and zeatin riboside in the stems andleaves was indicated also by chromatographic behaviour in othersystems, effects of permanganate oxidation, and cocrystallisationwith the authentic unlabelled compounds. Biological activitywas exhibited by both peaks in the soybean callus bioassay.Other metabolites in the shoot, possibly active as cytokinins,had the characteristics of dihydrozeatin, zeatin or dihydrozeatin-5'-nucleotide(s),and zeatin or dihydrozeatin glucosides. The gradual disappearancewith time of zeatin and its riboside from the shoot was accompaniedby an increase in the proportion of more polar metabolites. These results are discussed in relation to the possible exportof endogenous cytokinins by the nodules.  相似文献   

10.
11.
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

12.
A mass spectrometer was used to simultaneously follow the time course of photosynthetic O2 evolution and CO2 depletion of the medium by cells of the cyanobacterium Synechococcus leopoliensis UTEX 625. Analysis of the data indicated that both CO2 and HCO3 were simultaneously and continuously transported by the cells as a source of substrate for photosynthesis. Initiation of HCO3 transport by Na+ addition had no effect on ongoing CO2 transport. This result is interpreted to indicate that the CO2 and HCO3 transport systems are separate and distinctly different transport systems. Measurement of CO2-dependent photosynthesis indicated that CO2 uptake involved active transport and that diffusion played only a minor role in CO2 acquisition in cyanobacteria.  相似文献   

13.
Transformed roots of carrot were used to determine the effects of root metabolites on hyphal development from spores of the vesicular-arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal growth of this obligately biotrophic symbiont was greatly stimulated by a synergistic interaction between volatile and exudated factors produced by roots. Root volatiles alone provided little stimulation, and root exudates alone had no effect. For the first time, carbon dioxide was demonstrated to be a critical root volatile involved in the enhancement of hyphal growth. C-labeled root volatiles were fixed by the fungus and thus strongly suggested that CO(2) served as an essential carbon source.  相似文献   

14.
15.
Twenty-one monoclonal antibodies were raised against the aspartate aminotransferase-P2 isoenzyme from root nodules of Lupinus angustifolius [L.] cv Uniharvest. Induction of this isoenzyme is positively correlated with the onset of N2 fixation in effective root nodules and is associated with the assimilation of ammonia by the plant in the Rhizobium-legume symbiosis. The monoclonal antibodies produced were all of the IgG class, recognized five different epitopes on the protein, and represented greater than 90% of the available epitopes. These epitopes were not unique to lupin nodule aspartate aminotransferase-P2 but were shown to be present on the enzyme from tobacco leaves and potato. Four of the epitopes were conformational with a fifth epitope recognized by the appropriate monoclonals in both its native and denatured forms. None of the monoclonal antibodies produced reacted with Rhizobium Iupini NZP2257 extracts. Antibodies against two epitopes showed some cross-reaction with the constitutive aspartate aminotransferase-P1 isoenzyme also found in lupin root nodules. However, affinity of these monoclonals for AAT-P1 was three orders of magnitude lower than for AAT-P2. Monoclonals against the other epitopes appeared to be specific for aspartate aminotransferase-P2.  相似文献   

16.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

17.
18.
Carbon partitioning is important for understanding root developmentbut little is known about its regulation. Existing models suggestthat partitioning is controlled by the potential sink strength.They cannot, however, simulate hierarchical uptake other thanby using absolute priorities. Moreover, they cannot explainthat the changes in photoassimilate partitioning result fromchanges in photosynthesis. In this paper we present a modelof phloem sieve circulation, based on the model of Minchin etal. (Journal of Experimental Botany44: 947–955, 1993).The root system was represented by a network of segments towhich meristems were connected. The properties of the segmentswere determined by the differentiation stage. Photoassimilateimport from each organ was assumed to be limited by a metabolicprocess and driven by Michaelis–Menten kinetics. The axialgrowth was proportional to meristem respiration, which drivesthe flux of new cells required for root elongation. We usedthe model to look at trophic apical dominance, determinate andindeterminate root growth, the effect of the activity of a rooton competition with its neighbours, and the effect of photoassimilateavailability on changes in partitioning. The simulated phloemmass flow yielded results of the same order of magnitude asthose generally reported in the literature. For the main wellvascularized axis, the model predicted that one single apicalmeristem larger than its neighbouring laterals, was enough togenerate a taprooted system. Conversely, when the meristem oflaterals close to the collar had a volume similar to that ofthe taproot, the predicted network became fibrous. The modelpredicted a hierarchical priority for organ photoassimilateuptake, similar to that described in the literature, duringthe decline in photosynthetic activity. Our model suggests thatdeterminate growth of the first laterals resulted from a localshortage of photoassimilate at their meristem, as a result ofthe limited transport properties of the developed roots. Copyright2000 Annals of Botany Company Münch theory, phloem transport model, photoassimilate-partitioning, root growth, root system architecture, translocation  相似文献   

19.
DIXON  R. O. D. 《Annals of botany》1967,31(1):179-188
Hydrogenase activity in pea root nodules was studied by followinggas exchanges of hydrogen and deuterium. It was found that thenodules did not evolve hydrogen but that hydrogen was takenup when it was provided in the gas mixture. When increasingpartial pressures of deuterium were supplied, hydrogen was evolvedat a rate which increased as the pressure of deuterium increased.Deuterium was taken up at the same time as this hydrogen wasevolved. Hydrogen evolution in the presence of deuterium wasinhibited by nitrogen, while the uptake of deuterium remainedunaffected. It was concluded that pea root nodules have at leasttwo separate hydrogenase system that are working in oppositedirections and must thus be situated in sites of different oxidation-reductionpotentials within the nodule.  相似文献   

20.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):193-197
Changes in leaf growth, photosynthetic efficiency, and incorporation pattern of photosynthetically fixed 14CO2 in leaves 1 and 2 from plant apex, in roots, and rhizome induced in Curcuma by growing in a solution culture at Fe concentration of 0 and 5.6 g m–3 were studied. 14C was incorporated into primary metabolites (sugars, amino acids, and organic acids) and secondary metabolites (essential oil and curcumin). Fe deficiency resulted in a decrease in leaf area, its fresh and dry mass, chlorophyll (Chl) content, and CO2 exchange rate at all leaf positions. The rate of 14CO2 fixation declined with leaf position, maximum being in the youngest leaf. Fe deficiency resulted in higher accumulation of sugars, amino acids, and organic acids in leaves at both positions. This is due to poor translocation of metabolites. Roots and rhizomes of Fe-deficient plants had lower concentrations of total photosynthate, sugars, and amino acids whereas organic acid concentration was higher in rhizomes. 14CO2 incorporation in essential oil was lower in the youngest leaf, as well as incorporation in curcumin content in rhizome. Fe deficiency influenced leaf area, its fresh and dry masses, CO2 exchange rate, and oil and curcumin accumulation by affecting translocation of assimilated photosynthates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号