首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During Drosophila embryogenesis, a gradient of Nanos protein emanating from the posterior pole organizes abdominal segmentation. This gradient arises from translational regulation of nanos mRNA, which is activated in the specialized cytoplasm at the posterior pole of the embryo and repressed elsewhere. Previously, we have defined cis-acting elements in the mRNA that mediate this translational switch. In this report, we identify a factor named Smaug that binds to these elements and represses translation in the bulk cytoplasm. Smaug interacts gentically and biochemically with Oskar, a key component of the pole plasm for activation of nanos mRNA and specification of the germline precursors. These observations suggest that Smaug operates a translational switch that governs the distribution of Nanos protein.  相似文献   

2.
Proper deployment of Nanos protein at the posterior of the Drosophila embryo, where it directs posterior development, requires a combination of RNA localization and translational controls. These controls ensure that only the posteriorly-localized nanos mRNA is translated, whereas unlocalized nanos mRNA is translationally repressed. Here we describe cloning of the gene encoding Smaug, an RNA-binding protein that interacts with the sequences, SREs, in the nanos mRNA that mediate translational repression. Using an in vitro translation assay, we demonstrate that SRE-dependent repression occurs in extracts from early stage embryos. Immunodepletion of Smaug from the extracts eliminates repression, consistent with the notion that Smaug is involved. Smaug is a novel gene and the existence of potential mammalian Smaug homologs raises the possibility that Smaug represents a new class of conserved translational repressor.  相似文献   

3.
Spatially restricted synthesis of Nanos protein in the Drosophila embryo is essential for anterior-posterior patterning. Nanos translation is restricted to the posterior of the embryo by translational repression of nanos mRNA throughout the bulk cytoplasm and selective activation of posteriorly localized nanos mRNA. A 90-nucleotide translational control element (TCE) mediates translational repression. We show that TCE function requires formation of a bipartite secondary structure that is recognized by Smaug repressor and at least one additional factor. We also demonstrate that translational activation requires the interaction of localization factors with sequences that overlap TCE structural motifs. The identification of separate but overlapping recognition motifs for translational repressors and localization factors provides a molecular mechanism for the switch between translational repression and activation.  相似文献   

4.
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.  相似文献   

5.
Patterning of the anterior-posterior body axis of the Drosophila embryo requires production of Nanos protein selectively in the posterior. Spatially restricted Nanos synthesis is accomplished by translational repression of unlocalized nanos mRNA together with translational activation of posteriorly localized nanos. Repression of unlocalized nanos mRNA is mediated by a bipartite translational control element (TCE) in its 3' untranslated region. TCE stem-loop II functions during embryogenesis, through its interaction with the Smaug repressor. Stem-loop III represses unlocalized nanos mRNA during oogenesis, but trans-acting factors that carry out this function have remained elusive. Here we identify a Drosophila hnRNP, Glorund, that interacts specifically with stem-loop III. We establish that the ability of the TCE to repress translation in vivo reflects its ability to bind Glorund in vitro. These data, together with the analysis of a glorund null mutant, reveal a specific role for an hnRNP in repression of nanos translation during oogenesis.  相似文献   

6.
The nanos (nos) mRNA encodes the posterior determinant of the Drosophila embryo. Translation of the RNA is repressed throughout most of the embryo by the protein Smaug binding to Smaug recognition elements (SREs) in the 3' UTR. Translation is locally activated at the posterior pole by Oskar. This paper reports that the SREs govern the time- and ATP-dependent assembly of an exceedingly stable repressed ribonucleoprotein particle (RNP) in embryo extract. Repression can be virtually complete. Smaug and its co-repressor Cup as well as Trailer hitch and the DEAD box protein Me31B are part of the repressed RNP. The initiation factor eIF4G is specifically displaced, and 48S pre-initiation complex formation is inhibited. However, later steps in translation initiation are also sensitive to SRE-dependent inhibition. These data confirm several previously untested predictions of a current model for Cup-dependent repression but also suggest that the Cup model by itself is insufficient to explain translational repression of the nos RNA. In the embryo extract, recombinant Oskar relieves translational repression and deadenylation by preventing Smaug's binding to the SREs.  相似文献   

7.
8.
During Drosophila embryogenesis, Smaug protein represses translation of Nanos through an interaction with a specific element in its 3(')UTR. The repression occurs in the bulk cytoplasm of the embryo; Nanos is, however, successfully translated in the specialized cytoplasm of the posterior pole. This generates a gradient of Nanos emanating from the posterior pole that is essential for organizing proper abdominal segmentation. To understand the structural basis of RNA binding and translational control, we have crystallized a domain of Drosophila Smaug that binds RNA. The crystals belong to the space group R3 with unit cell dimensions of a=b=129.3A, c=33.1A, alpha=beta=90 degrees, gamma=120 degrees and diffract to 1.80A with synchrotron radiation. Initial characterization of this domain suggests that it encodes a novel RNA-binding motif.  相似文献   

9.
10.
RNA recognition via the SAM domain of Smaug   总被引:1,自引:0,他引:1  
The Nanos protein gradient in Drosophila, required for proper abdominal segmentation, is generated in part via translational repression of its mRNA by Smaug. We report here the crystal structure of the Smaug RNA binding domain, which shows no sequence homology to any previously characterized RNA binding motif. The structure reveals an unusual makeup in which a SAM domain, a common protein-protein interaction module, is affixed to a pseudo-HEAT repeat analogous topology (PHAT) domain. Unexpectedly, we find through a combination of structural and genetic analysis that it is primarily the SAM domain that interacts specifically with the appropriate nanos mRNA regulatory sequence. Therefore, in addition to their previously characterized roles in protein-protein interactions, some SAM domains play crucial roles in RNA binding.  相似文献   

11.
Nanos (Nos) protein is required in the posterior of the Drosophila embryo to promote abdominal development, but must be excluded from the anterior to permit head and thorax development [1,2]. Spatial restriction of Nos is accomplished by selective translation of the 4% of nos mRNA localized to the posterior pole and translational repression of the remaining unlocalized mRNA [3-5]. Repression is mediated by a 90-nucleotide translational control element (TCE) in the nos 3' untranslated region (UTR) and the TCE-binding protein Smaug [4,6,7], but the molecular mechanism is unknown. We used sucrose density gradient sedimentation to ascertain whether unlocalized nos mRNA is excluded from polysomes and therefore repressed during translational initiation. Surprisingly, a significant percentage of nos mRNA was found to be associated with polysomes, even in mutants in which all nos mRNA is unlocalized and repressed. Using a regulated Drosophila cell-free translation system, we showed that ribosomes contained within these polysomes are capable of elongation in vitro, under conditions in which synthesis of Nos protein is repressed. Thus, synthesis of ectopic Nos protein is inhibited by a novel regulatory mechanism that does not involve a stable arrest of the translation cycle.  相似文献   

12.
Translational control of gene expression plays a fundamental role in the early development of many organisms. In Drosophila, selective translation of nanos mRNA localized to the germ plasm at the posterior of the embryo, together with translational repression of nanos in the bulk cytoplasm, is essential for development of the anteroposterior body pattern. We show that both components to spatial control of nanos translation initiate during oogenesis and that translational repression is initially independent of Smaug, an embryonic repressor of nanos. Repression during oogenesis and embryogenesis are mediated by distinct stem loops within the nanos 3' untranslated region; the Smaug-binding stem-loop acts strictly in the embryo, whereas a second stem-loop functions in the oocyte. Thus, independent regulatory modules with temporally distinct activities contribute to spatial regulation of nanos translation. We propose that nanos evolved to exploit two different stage-specific translational regulatory mechanisms.  相似文献   

13.
The Drosophila Nanos protein is a localized repressor of hunchback mRNA translation in the early embryo, and is required for the establishment of the anterior-posterior body axis. Analysis of nanos mutants reveals that a small, evolutionarily conserved, C-terminal region is essential for Nanos function in vivo, while no other single portion of the Nanos protein is absolutely required. Within the C-terminal region are two unusual Cys-Cys-His-Cys (CCHC) motifs that are potential zinc-binding sites. Using absorption spectroscopy and NMR we demonstrate that the CCHC motifs each bind one equivalent of zinc with high affinity. nanos mutations disrupting metal binding at either of these two sites in vitro abolish Nanos translational repression activity in vivo. We show that full-length and C-terminal Nanos proteins bind to RNA in vitro with high affinity, but with little sequence specificity. Mutations affecting the hunchback mRNA target sites for Nanos-dependent translational repression were found to disrupt translational repression in vivo, but had little effect on Nanos RNA binding in vitro. Thus, the Nanos zinc domain does not specifically recognize target hunchback RNA sequences, but might interact with RNA in the context of a larger ribonucleoprotein complex.  相似文献   

14.
BACKGROUND: Localization of nanos mRNA to the posterior pole of the Drosophila embryo directs local synthesis of Nanos protein that is essential for patterning of the anterior-posterior body axis and germ cell function. While nanos RNA is synthesized by the ovarian nurse cells and appears at the posterior pole of the ooctye late in oogenesis, the mechanism by which this RNA is translocated to and anchored at the oocyte posterior is unknown. RESULTS: By labeling endogenous nanos RNA with GFP, we have been able to follow the dynamic pathway of nanos localization in living oocytes. We demonstrate that nanos localization initiates immediately upon nurse cell dumping, whereby diffusion, enhanced by microtubule-dependent cytoplasmic movements, translocates nanos RNA from the nurse cells to the ooctye posterior. At the posterior, nanos is trapped by association, in particles, with the posteriorly localized germ plasm. Actin-dependent anchoring of nanos RNA complexed to the germ plasm at the posterior maintains localization in the face of rapid cytoplasmic movements. CONCLUSIONS: These results reveal a diffusion-based, late-acting posterior localization mechanism for long-range transport of nanos mRNA. This mechanism differs from directed transport-based localization mechanisms in its reliance on bulk movement of RNA.  相似文献   

15.
Anterior-posterior axis patterning of the Drosophila embryo requires Nanos activity selectively in the posterior. This spatial asymmetry of Nanos is generated by the localization of nanos mRNA to the posterior pole of the embryo, where it is subsequently translated. Posterior localization of nanos is mediated by a complex cis-acting localization signal in its 3' untranslated region comprising several partially redundant localization elements. This localization signal redundancy has hampered the identification of trans-acting factors that act specifically to effect posterior localization of nanos. Here, we have used a biochemical approach to identify Rumpelstiltskin, a Drosophila heterogeneous nuclear ribonucleoprotein (hnRNP) M homolog, which binds directly to an individual nanos localization element. Rumpelstiltskin associates with nanos mRNA in vitro and in vivo, and binding by Rumpelstiltskin correlates with localization element function in vivo. Through analysis of a rumpelstiltskin null mutation by genetic strategies that circumvent redundancy, we demonstrate that Rumpelstiltskin regulates anterior-posterior axis patterning by functioning as a direct-acting nanos mRNA localization factor.  相似文献   

16.
Translational control of gene expression is essential for development in organisms that rely on maternal mRNAs. In Drosophila, translation of maternal nanos (nos) mRNA must be restricted to the posterior of the early embryo for proper patterning of the anterior-posterior axis. Spatial control of nos translation is coordinated through the localization of a small subset of nos mRNA to the posterior pole late in oogenesis, activation of this localized mRNA, and repression of the remaining unlocalized nos mRNA throughout the bulk cytoplasm. Translational repression is mediated by the interaction of a cis-acting element in the nos 3' untranslated region with two proteins, Glorund (Glo) and Smaug (Smg), that function in the oocyte and embryo, respectively. The mechanism of Glo-dependent repression is unknown. Previous work suggests that Smg represses translation initiation but this model is not easily reconciled with evidence for polysome association of repressed nos mRNA. Using an in vitro translation system, we have decoupled translational repression of nos imposed during oogenesis from repression during embryogenesis. Our results suggest that both Glo and Smg regulate translation initiation, but by different mechanisms. Furthermore, we show that, during late oogenesis, nos translation is also repressed post-initiation and provide evidence that Glo mediates this event. This post-initiation block is maintained into embryogenesis during the transition to Smg-dependent regulation. We propose that the use of multiple modes of repression ensures inactivation of nos RNA that is translated at earlier stages of oogenesis and maintenance of this inactivate state throughout late oogenesis into embryogenesis.  相似文献   

17.
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.  相似文献   

18.
Spatial control of mRNA translation can generate cellular asymmetries and functional specialization of polarized cells like neurons. A requirement for the translational repressor Nanos (Nos) in the Drosophila larval peripheral nervous system (PNS) implicates translational control in dendrite morphogenesis [1]. Nos was first identified by its requirement in the posterior of the early embryo for abdomen formation [2]. Nos synthesis is targeted to the posterior pole of the oocyte and early embryo through translational repression of unlocalized nos mRNA coupled with translational activation of nos mRNA localized at the posterior pole [3, 4]. Abolishment of nos localization prevents abdominal development, whereas translational derepression of unlocalized nos mRNA suppresses head/thorax development, emphasizing the importance of spatial regulation of nos mRNA [3, 5]. Loss and overexpression of Nos affect dendrite branching complexity in class IV dendritic arborization (da) neurons, suggesting that nos also might be regulated in these larval sensory neurons [1]. Here, we show that localization and translational control of nos mRNA are essential for da neuron morphogenesis. RNA-protein interactions that regulate nos translation in the oocyte and early embryo also regulate nos in the PNS. Live imaging of nos mRNA shows that the cis-acting signal responsible for posterior localization in the oocyte/embryo mediates localization to the processes of class IV da neurons but suggests a different transport mechanism. Targeting of nos mRNA to the processes of da neurons may reflect a local requirement for Nos protein in dendritic translational control.  相似文献   

19.
20.
Animal microRNAs (miRNAs) typically regulate gene expression by binding to partially complementary target sites in the 3′ untranslated region (UTR) of messenger RNA (mRNA) reducing its translation and stability. They also commonly induce shortening of the mRNA 3′ poly(A) tail, which contributes to their mRNA decay promoting function. The relationship between miRNA-mediated deadenylation and translational repression has been less clear. Using transfection of reporter constructs carrying three imperfectly matching let-7 target sites in the 3′ UTR into mammalian cells we observe rapid target mRNA deadenylation that precedes measureable translational repression by endogenous let-7 miRNA. Depleting cells of the argonaute co-factors RCK or TNRC6A can impair let-7-mediated repression despite ongoing mRNA deadenylation, indicating that deadenylation alone is not sufficient to effect full repression. Nevertheless, the magnitude of translational repression by let-7 is diminished when the target reporter lacks a poly(A) tail. Employing an antisense strategy to block deadenylation of target mRNA with poly(A) tail also partially impairs translational repression. On the one hand, these experiments confirm that tail removal by deadenylation is not strictly required for translational repression. On the other hand they show directly that deadenylation can augment miRNA-mediated translational repression in mammalian cells beyond stimulating mRNA decay. Taken together with published work, these results suggest a dual role of deadenylation in miRNA function: it contributes to translational repression as well as mRNA decay and is thus critically involved in establishing the quantitatively appropriate physiological response to miRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号