首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phosphate on the binuclear iron center of pink (reduced) uteroferrin was examined by magnetic resonance and optical spectroscopy. The purple (oxidized) protein, which contains 1 mol of tightly bound phosphate per mol of enzyme at isolation, does not give rise to a 31P NMR signal. Phosphate binding to phosphate-stripped pink uteroferrin is indistinguishable from that in the native purple phosphoprotein. As measured by EPR and optical spectroscopy, the rate of reaction between phosphate and pink uteroferrin is pH-dependent, decreasing as the pH increases. Phosphate is capable of binding to the reduced protein between pH 3 and 7.8, resulting in formation of the purple uteroferrin-phosphate complex. Evans susceptibility measurements at pH 4.9 indicate that the EPR silent species with a maximum absorption at 535 nm, generated upon phosphate addition to pink uteroferrin, is diamagnetic. Moreover, phosphate causes disappearance of the hyperfine-shifted resonances in the 1H NMR spectra of the reduced protein. We therefore have not been able to identify the paramagnetic "purple reduced enzyme-phosphate complex" reported by Pyrz et al. (Pyrz, J. W., Sage, J. T., Debrunner, P. G., and Que, Jr., L. (1986) J. Biol Chem. 261, 11015-11020) using Mossbauer spectroscopy and dithionite-reduced 57Fe-reconstituted uteroferrin. Our present data with native unmodified enzyme are in accord with our earlier results (Antanaitis, B. C., and Aisen, P. (1985) J. Biol. Chem. 260, 751-756) and with the results of Burman et al. (Burman, S., Davis, J. C., Weber, M. J., and Averill, B. A. (1986) Biochem. Biophys. Res. Commun. 136, 490-497) on bovine spleen phosphatase, suggesting that phosphate binding to reduced protein rapidly induces oxidation of the binuclear iron center.  相似文献   

2.
The exchange coupling of reduced uteroferrin has been measured (19.8(5) cm-1 S1.S2) using recently developed techniques for studying metalloprotein magnetization. A spin Hamiltonian describing the coupled binuclear Fe(II).Fe(III) center has been used to fit the low and high field magnetization data, the EPR g values, and the highly anisotropic effective hyperfine tensor of the ferric site. The exchange coupling of the phosphate complex of reduced uteroferrin has also been measured (6.0(5) cm-1 S1.S2) using the same techniques. The smaller exchange coupling of the phosphate complex is comparable with the zero field splittings of the iron sites. This results in increased sensitivity of the system g values (found by calculation from the spin Hamiltonian) to variations of the zero field splitting parameters arising from heterogeneities in the protein microenvironment. Consequently, there is a very significant (9-fold) increase in the "effective g strain" of the system compared to the situation in the absence of phosphate. This, together with the larger g anisotropy (g = (1.06, 1.51, 2.27)), gives rise to an EPR signal for the phosphate complex of reduced uteroferrin which is extremely broad and difficult to detect but which has now been identified for the first time.  相似文献   

3.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential labeling experiments were conducted with the above three reagents to label specific lysine residues. Thus pyridoxal phosphate was found to modify 2 lysine residues leading to an alteration of catalytic activity. At least 1 lysine residue has been reported previously to be modified by pyridoxal phosphate at the active site of glutamine synthetase (Whitley, E. J., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). By varying the pH and buffer, one or both residues could be modified. One of these lysine residues was associated with approximately 81% loss in activity after modification while modification of the second lysine residue led to complete inactivation of the enzyme. This second lysine was found to be the residue which reacted specifically with the ATP affinity label 5'-p-fluorosulfonylbenzoyladenosine. Lys-47 has been previously identified as the residue that reacts with this reagent (Pinkofsky, H. B., Ginsburg, A., Reardon, I., Heinrikson, R. L. (1984) J. Biol. Chem. 259, 9616-9622; Foster, W. B., Griffith, M. J., and Kingdon, H. S. (1981) J. Biol. Chem. 256, 882-886). Thiourea dioxide inactivated glutamine synthetase with total loss of activity and concomitant modification of a single lysine residue. The modified amino acid was identified as homoarginine by amino acid analysis. The lysine residue modified by thiourea dioxide was established by differential labeling experiments to be the same residue associated with the 81% partial loss of activity upon pyridoxal phosphate inactivation. Inactivation with either thiourea dioxide or pyridoxal phosphate did not affect ATP binding but glutamate binding was weakened. The glutamate site was implicated as the site of thiourea dioxide modification based on protection against inactivation by saturating levels of glutamate. Glutamate also protected against pyridoxal phosphate labeling of the lysine consistent with this residue being the common site of reaction with thiourea dioxide and pyridoxal phosphate.  相似文献   

4.
Azospirillum brasilense glutamate synthase has been studied by absorption, electron paramagnetic resonance, and circular dichroism spectroscopies in order to determine the type and number of iron-sulfur centers present in the enzyme alpha beta protomer and to gain information on the role of the flavin and iron-sulfur centers in the catalytic mechanism. The FMN and FAD prosthetic groups are demonstrated to be non-equivalent with respect to their reactivities with sulfite. Sulfite reacts with only one of the two flavins forming an N(5)-sulfite adduct with a Kd of approximately 1 mM. The enzyme-sulfite complex is reduced by NADPH, and the complexed sulfite is competitively displaced by 2-oxoglutarate, which suggests the reactive flavin to be at the imine-reducing site. These data are in agreement with the two-site model of the enzyme active center proposed on the basis of kinetic studies [Vanoni, M.A., Nuzzi, L., Rescigno, M., Zanetti, G., & Curti, B. (1991) Eur. J. Biochem. 202, 181-189]. Each enzyme protomer was found, by chemical analysis, to contain 12.1 +/- 0.5 mol of non-heme iron. Electron paramagnetic resonance spectroscopic studies on the oxidized and reduced forms of glutamate synthase demonstrated the presence of three distinct iron-sulfur centers per enzyme protomer. The oxidized enzyme exhibits an axial spectrum with g values at 2.03 and 1.97, which is highly temperature-dependent and integrates to 1.1 +/- 0.2 spin/protomer. This signal is assigned to a [3Fe-4S]1+ cluster (Fe-S)I. Reduction of the enzyme with an NADPH-regenerating system results in reduction of the [3Fe-4S]1+ center to a species with a g approximately 12 signal characteristic of the S = 2 spin state of a [3Fe-4S]0 cluster. The NADPH-reduced enzyme also exhibits an [Fe-S] signal at g values of 1.98, 1.95, and 1.88, which integrates to 0.9 spin/protomer and is due to a second cluster (Fe-S)II. Reduction of the enzyme with the light/deazaflavin method results in a signal characteristic of [Fe-S] clusters with g values of 2.03, 1.92, and 1.86 and an integrated intensity of 1.9 spin/protomer. This signal arises from reduction of the (Fe-S)II center and from that of the third, lower potential iron-sulfur center (Fe-S)III. Circular dichroism spectral data on the oxidized and reduced forms of the enzyme are more consistent with the assignment of (Fe-S)II and (Fe-S)III as [4Fe-4S] clusters rather than [2Fe-2S] centers.  相似文献   

5.
Structural studies of Escherichia coli aspartate transcarbamoylase suggest that the R state of the enzyme is stabilized by an interaction between Ser-171 of the aspartate domain and both the backbone carbonyl of His-134 and the side chain of Gln-133 of the carbamoyl phosphate domain of a catalytic chain [Ke, H.-M., Lipscomb, W.N., Cho, Y., & Honzatko, R. B. (1988) J. Mol. Biol. 204, 725-747]. In the present study, site-specific mutagenesis is used to replace Ser-171 by alanine, thereby eliminating the interactions between Ser-171 and both Gln-133 and His-134. The Ser-171----Ala holoenzyme exhibits no cooperativity, more than a 140-fold loss of activity, little change in the carbamoyl phosphate concentration at half the maximal observed specific activity, and a 7-fold increase in the aspartate concentration at half the maximal observed specific activity. Although the Ser-171----Ala enzyme exhibits no homotropic cooperativity, it is still activated by N-(phosphonacetyl)-L-aspartate (PALA), but not by succinate, in the presence of saturating carbamoyl phosphate and subsaturating aspartate. At subsaturating concentrations of aspartate, the Ser-171----Ala enzyme is still activated by ATP but is inhibited less by CTP than is the wild-type enzyme. At saturating concentrations of aspartate, the Ser-171----Ala enzyme is activated by ATP and inhibited by CTP to an even greater extent than at subsaturating concentrations of aspartate. At saturating aspartate, the wild-type enzyme is neither activated by ATP nor inhibited by CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Use of a revised purification procedure that maintains the enzyme in a high-salt environment has resulted in the isolation of a new form of the bovine spleen purple acid phosphatase. This enzyme cannot be distinguished from that previously described [Davis, J. C., Lin, S. S., & Averill, B. A. (1981) Biochemistry 20, 4062] by electrophoresis, isoelectric focusing, Western blot analysis, or N-terminal amino acid sequence and exhibits identical catalytic properties and EPR spectra in the reduced (pink) form. It does, however, possess a much more highly ordered structure as shown by CD spectra and exhibits markedly different reactivity upon oxidation and different visible spectra upon binding of inhibitory anions or changing pH. The properties of the new high-salt-stabilized form of the enzyme have permitted an extensive examination of the visible absorption spectra of complexes of the oxidized and reduced enzyme with inhibitory anions. It is found that these anions may be grouped into three classes on the basis of their effect on the visible absorption maximum and their sensitivity to pH: phosphate, arsenate, and AMP; tungstate and molybdate; and fluoride. This grouping is reinforced by a detailed examination of the steady-state kinetics of the enzyme in the presence of these inhibitors, which reveals that the first class exhibits mixed-type inhibition due to the presence of competitive and noncompetitive binding sites, while the second class exhibits simple non-competitive inhibition. Fluoride exhibits complex inhibition behavior characterized by curved Lineweaver-Burk plots; this behavior cannot be attributed to the presence of inhibitory aluminum fluoride complexes. Taken together, the spectral and kinetics data are consistent with a picture in which tetrahedral oxyanions bind in a noncompetitive fashion by bridging the two iron atoms in the dinuclear center, with the smaller anions also being able to bind in a competitive manner at a single iron atom.  相似文献   

7.
The role of the active site hydrogen bond of cytochrome P-450cam has been studied utilizing a combination of site-directed mutagenesis and substrate analogues with altered hydrogen bonding capabilities. Cytochrome P-450cam normally catalyzes the regiospecific hydroxylation of the monoterpene camphor. The x-ray crystal structure of this soluble bacterial cytochrome P-450 (Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J. (1985) J. Biol. Chem. 260, 16122-16128) indicates a specific hydrogen bond between tyrosine 96 and the carbonyl moiety of the camphor substrate. The site-directed mutant in which tyrosine 96 has been changed to a phenylalanine and the substrate analogues thiocamphor and camphane have been used to probe this interaction in several aspects of catalysis. At room temperature, both the mutant enzyme with camphor and the wild type enzyme with thiocamphor bound result in 59 and 65% high-spin ferric enzyme as compared to the 95% high spin population obtained with native enzyme and camphor as substrate. The equilibrium dissociation constant is moderately increased, from 1.6 microM for the wild type protein to 3.0 and 3.3 microM for wild type-thiocamphor and mutant-camphor complexes, respectively. Camphane bound to cytochrome P-450cam exhibits a larger decrease in high spin fraction (45%) and a correspondingly larger KD (46 microM), suggesting that the carbonyl moiety of camphor plays an important steric role in addition to its interaction as a hydrogen bond acceptor. The absolute regioselectivity of the mutant enzyme, and of the wild type enzyme with thiocamphor, is lost resulting in production of several hydroxylated products in addition to the 5-exo-hydroxy isomer. Based on rates of NADH oxidation, comparison of the substrate specificity for these systems (kcat/KD) indicates a 5- and 7-fold decrease in specificity for the mutant enzyme and thiocamphor-wild type complex, respectively. The replacement of the cytochrome P-450cam active site tyrosine with phenylalanine does not affect the branching ratio of monooxygenase versus oxidase chemistry or peroxygenase activity (Atkins, W.M., and Sligar, S.G. (1987) J. Am. Chem. Soc. 109, 3754-3760).  相似文献   

8.
Previous studies suggested that rabbit liver microsomes contain cytochrome P-450 monooxygenase(s) with low affinity for (omega-1)-hydroxylation and high affinity for omega-hydroxylation of prostaglandins (Theoharides, A. D., and Kupfer, D. (1981) J. Biol. Chem. 256, 2168-2175). The current investigation describes the isolation from livers of untreated rabbits of a cytochrome P-450 catalyzing, with regioselectivity, the omega-hydroxylation of prostaglandins E1 and E2. The isolation of the enzyme involved enrichment of the omega-hydroxylase activity by polyethylene glycol 8000 fractionation, followed by ion-exchange high performance liquid chromatography. Based on Mr of 59,000-60,000 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the isolated enzyme is referred to as P-450 form 7. This P-450 exhibits a low spin spectrum (lambda max = 417 nm) and a difference spectrum of the CO-reduced complex versus reduced (lambda max = 451 nm). For catalytic activity, the P-450 form 7 was reconstituted with NADPH-P-450 reductase, cytochrome b5, and lipid. There was no activity in the absence of the reductase, and deletion of cytochrome b5 yielded a minimal amount of product (heme could not substitute for cytochrome b5), demonstrating an absolute requirement for these components.  相似文献   

9.
Transfer of iron from native porcine uteroferrin to apotransferrin was investigated using EPR spectroscopy. Purple (oxidized) or pink (reduced) forms of uteroferrin were incubated with porcine or human apotransferrin under conditions of temperature (37 degrees C) and pH (6.8) approximating those found in the allantoic fluid of the pregnant sow. Studies were also performed in the presence of mediators such as ascorbate, citrate, and ATP in concentrations previously claimed to be effective in promoting large-scale transfer of iron (Buhi, W. C., Ducsay, C. A., Bazer, F. W., and Roberts, R. M. (1982) J. Biol. Chem. 257, 1712-1723). Our experiments indicate that even in the presence of mediators, less than 20% of the iron in uteroferrin is transferred to apotransferrin at the end of 24 h and such transfer may be accompanied by denaturation of uteroferrin. We therefore conclude that the direct transfer of iron to apotransferrin is unlikely to be a physiological role of uteroferrin.  相似文献   

10.
Uteroferrin is an iron-binding glycoprotein, which is abundantly synthesized in porcine uterine glandular endometrium and believed to be involved in maternal/fetal iron transport. In the present study, uteroferrin has been cloned and functionally expressed using baculovirus-infected insect host cells Spodoptera frugiperda. The work also addresses the possible role of proteolytic cleavage to facilitate the release of uteroferrin-bound iron. The enzyme secreted in culture medium exhibits a molecular mass and catalytic properties similar to native porcine uteroferrin. The specific activity was estimated at 233 U/mg using p-nitrophenyl phosphate as substrate. Partial cleavage of the enzyme with trypsin resulted in a 1.7-fold enhancement in specific activity and a two-subunit polypeptide as observed in preparations of most mammalian purple acid phosphatases. Digestion with the aspartic protease pepsin resulted in a 2.5-fold enzyme inactivation correlated with the appearance of low molecular weight polypeptide fragments and the release of enzyme-bound iron.  相似文献   

11.
57Fe-enriched ribonucleotide reductase subunit B2 from Escherichia coli strain N6405/pSPS2 has been characterized by M?ssbauer and EPR spectroscopy in its native diferric state and in a new differous form. The native protein exhibits two M?ssbauer doublets in a 1:1 ratio with parameters that are in excellent agreement with those reported for the wild-type protein (Atkin, C. L., Thelander, L., Reichard, P., and Lang, G. (1983) J. Biol. Chem. 248, 7464-7472); in addition, our studies show the absence of adventitiously bound iron. The iron content in the present samples approached 4 per B2 subunit, and the tyrosyl radical content exceeded 1 per B2 subunit. The higher values are attributed to the use of a new epsilon 280 for the protein and more efficient methods for iron extraction. We thus propose that subunit B2 has two binuclear iron clusters, each associated with its own tyrosyl radical, in contradistinction from the prevailing model. Reduction of the native protein with dithionite or reconstitution of the apoprotein with Fe(II) afforded a protein complex with M?ssbauer parameters, delta EQ = 3.13 mm/s and delta = 1.26 mm/s at 4.2 K, and a low field EPR signal associated with an integer spin system. These spectral properties resemble those of methane monooxygenase in its diferrous form. Upon exposure to O2, the reduced subunit B2 readily converts to the diferric state and yields active enzyme.  相似文献   

12.
Magnetic circular dichroism (MCD) spectra have been recorded for beef heart cytochrome oxidase and a number of its inhibitor complexes. The resting enzyme exhibits a derivate shape Faraday C term in the Soret region, characteristic of low spin ferric heme, which accounts for 50% of the total oxidase heme a. The remaining heme a (50%) is assigned to the high spin state. MCD temperature studies, comparison with the MCD spectra of heme a-imidazole model compounds, and ligand binding (cyanide, formate) studies are consistent with these spin state assignments in the oxidized enzyme. Furthermore, the ligand binding properties and correlations between optical and MCD parameters indicate that in the resting enzyme the low spin heme a is due solely to cytochrome a3+ and the high spin heme a to cytochrome a33+. The Soret MCD of the reduced protein is interpreted as th sum of two MCD curves: an intense, asymmetric MCD band very similar to that exhibited by deoxymyoglobin which we assign to paramagnetic high spin cytochrome a3(2+) and a weaker, more symmetric MCD contribution, which is attributed to diamagnetic low spin cytochrome a2+. Temperature studies of the Soret MCD intensity support this proposed spin state heterogeneity. Ligand binding (CO, CN-) to the reduced protein eliminates the intense MCD associated with high spin cytochrome a3(2+); however, the band associated with cytochrome a2+ is observed under these conditions as well as in a number of inhibitor complexes (cyanide, formate, sulfide, azide) of the partially reduced protein. The MCD spectra of oxidized, reduced, and inhibitor-complexed cytochrome oxidase show no evidence for heme-heme interaction via spectral parameters. This conclusion is used in conjunction with the fact that ferric, high spin heme exhibits weak MCD intensity to calculate the MCD spectra for the individual cytochromes of the oxidase as well as the spectra for some inhibitor complexes of cytochrome a3. The results are most simply interpreted using the model we have recently proposed to account for the electronic and magnetic properties of cytochrome (Palmer, G., Babcock, F.T., and Vcikery, L.E. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 2206-2210).  相似文献   

13.
The periplasmic Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough) contains three iron-sulfur prosthetic groups: two putative electron transferring [4Fe-4S] ferredoxin-like cubanes (two F-clusters), and one putative Fe/S supercluster redox catalyst (one H-cluster). Combined elemental analysis by proton-induced X-ray emission, inductively coupled plasma mass spectrometry, instrumental neutron activation analysis, atomic absorption spectroscopy and colorimetry establishes that elements with Z > 21 (except for 12-15 Fe) are present in 0.001-0.1 mol/mol quantities, not correlating with activity. Isoelectric focussing reveals the existence of multiple charge conformers with pI in the range 5.7-6.4. Repeated re-chromatography results in small amounts of enzyme of very high H2-production activity determined under standardized conditions (approximately 7000 U/mg). The enzyme exists in two different catalytic forms: as isolated the protein is 'resting' and O2-insensitive; upon reduction the protein becomes active and O2-sensitive. EPR-monitored redox titrations have been carried out of both the resting and the activated enzyme. In the course of a reductive titration, the resting protein becomes activated and begins to produce molecular hydrogen at the expense of reduced titrant. Therefore, equilibrium potentials are undefined, and previously reported apparent Em and n values [Patil, D. S., Moura, J. J. G., He, S. H., Teixeira, M, Prickril, B. C., DerVartanian, D. V., Peck, H. D. Jr, LeGall, J. & Huynh, B.-H. (1988) J. Biol. Chem. 263, 18,732-18,738] are not thermodynamic quantities. In the activated enzyme an S = 1/2 signal (g = 2.11, 2.05, 2.00; 0.4 spin/protein molecule), attributed to the oxidized H cluster, exhibits a single reduction potential, Em,7 = -307 mV, just above the onset potential of H2 production. The midpoint potential of the two F clusters (2.0 spins/protein molecule) has been determined either by titrating active enzyme with the H2/H+ couple (E,m = -330 mV) or by dithionite-titrating a recombinant protein that lacks the H-cluster active site (Em,7.5 = -340 mV). There is no significant redox interaction between the two F clusters (n approximately 1).  相似文献   

14.
Pyruvate kinase requires K+ for maximal activity; the enzyme exhibits 0.02% of maximal activity in its absence [Kayne, F. J. (1971) Arch. Biochem. Biophys. 143, 232-239]. However, pyruvate kinase entrapped in reverse micelles exhibits an important K+-independent activity [Ramírez-Silva, L., Tuena de Gómez-Puyou, M., & Gómez-Puyou, A. (1993) Biochemistry 32, 5332-5338]. It is possible that the amount of water, as well as interactions of the protein with the micelles, can account for this behavior. We therefore explored the solvent effects on the catalytic properties of muscle pyruvate kinase. The enzyme exhibited an activity of 19.4 micromol x min(-1) x mg(-1) in 40% dimethylsulfoxide, compared with 280 and 0.023 micromol x min(1) x mg(-1) observed with and without K+ in water, respectively. pH activity profiles and kinetic constants for the substrates of pyruvate kinase in dimethylsulfoxide without K+ were similar to those in 100% water with K+, and differed from those in water without K+. The spectral center of mass of the emission spectrum of pyruvate kinase in 100% water exhibited a blue shift of 3.5 nm in the presence of Mg(2+), phosphenolpyruvate, and K+, ligands that induce the active conformation of the enzyme. The spectral center of mass of the apoenzyme in 30-40% dimethylsulfoxide coincided with that of the enzyme-Mg(2+)-phosphenolpyruvate-K+ complex in 100% water. The water relaxation rate enhancement factor and binding of phosphenolpyruvate to the pyruvate kinase-Mn(2+)-(CH3)4N+ complex in 30-40% dimethylsulfoxide were similar to those of the pyruvate kinase-Mn(2+)-K+ complex in water. The aforementioned results indicate that when muscle pyruvate kinase is without K+, 30-40% dimethylsulfoxide induces its active conformation.  相似文献   

15.
8-Azido-ATP has been found to serve as a photoaffinity label for two distinct ATP sites on rat liver carbamoyl phosphate synthetase I and to allow preliminary localization of these sites. In the dark, 8-azido-ATP acted as a competitive inhibitor with respect to ATP. Ultraviolet irradiation of carbamoyl phosphate synthetase I in the presence of 8-azido-ATP led to an irreversible loss of activity. ATP specifically protected against this inactivation. The incorporation of 2 mol of 8-azido-ATP per mol of enzyme was required for complete inactivation. To localize the 8-azido-ATP-binding sites to discrete regions of carbamoyl phosphate synthetase I which appear to be structural domains, the enzyme was photolabeled with [gamma-32P]8-azido-ATP and subjected to limited proteolytic digestion. The resulting model for the functional roles of the domains is that there is one ATP site on each of the two large internal structural domains of the enzyme. Each of these domains was found to contain the consensus sequences A and B common to many other nucleotide-binding proteins (Walker, J.E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982) EMBO J. 1, 945-951). In addition, there is extensive structural and possibly functional interaction of the smaller N-terminal domain with one of the internal ATP-binding domains, analogous to a subunit interaction observed with the evolutionarily related Escherichia coli carbamoyl phosphate synthetase.  相似文献   

16.
Low phosphate and high phosphate forms of phosphofructokinase (Furuya, E., and Uyeda, K. (1980) J. Biol. Chem. 255, 11656-11659) from rat liver were purified to homogeneity and various properties were compared. The specific activities of these enzymes and their electrophoretic mobilities on polyacrylamide in sodium dodecyl sulfate are the same. A limited tryptic digestion yields products with no change in the enzyme activity but with a reduction in the molecular weight of about 2000. Both low and high phosphate enzymes can be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, and approximately twice as much [32P]phosphate is incorporated into the low phosphate than the high phosphate enzyme. A comparison of their allosteric kinetic properties reveal that the high phosphate enzyme is much more sensitive to inhibition by ATP and citrate and shows a higher K0.5 for fructose 6-phosphate than the low phosphate enzyme, and the difference in the K0.5 values becomes greater at lower pH values. Furthermore, the high phosphate phosphofructokinase is less sensitive to activation by AMP and fructose 2,6-bisphosphate. Moreover, when the low phosphate enzyme is phosphorylated by protein kinase, the resulting phosphorylated enzyme exhibits a higher K0.5 for fructose 2,6-bisphosphate than does the untreated enzyme. These results demonstrate that the phosphorylation affects the allosteric kinetic properties of the enzyme and results in a less active form of phosphofructokinase.  相似文献   

17.
D C Crans  C M Simone  R C Holz  L Que 《Biochemistry》1992,31(47):11731-11739
Uteroferrin, the purple acid phosphatase from porcine uterine fluid, is noncompetitively inhibited by vanadate in a time-dependent manner under both aerobic and anaerobic conditions. This time-dependent inhibition is observed only with the diiron enzyme and is absent when the FeZn enzyme is used. The observations are attributed to the sequential formation of two uteroferrin-vanadium complexes. The first complex forms rapidly and reversibly, while the second complex forms slowly and results in the production of catalytically inactive oxidized uteroferrin and V(IV), which is observed by EPR. The redox reaction can be reversed by treatment of the oxidized enzyme first with (V(IV)) and then EDTA to generate a catalytically active uteroferrin. Multiple inhibition kinetics suggests that vanadate is mutually exclusive with molybdate, tungstate, and vanadyl cation. The binding site for each of these anions is distinct from the site to which the competitive inhibitors phosphate and arsenate bind. The time-dependent inhibition by vanadate of uteroferrin containing the diiron core represents a new type of mechanism by which vanadium can interact with proteins and gives additional insight into the binding of anions to uteroferrin.  相似文献   

18.
The cytoplasmic protein-tyrosine kinase domain of the insulin receptor (residues 959-1355) has been expressed as a soluble protein in Sf9 insect cells via a Baculovirus expression vector (Ellis, L., Levitan, A., Cobb, M.H., and Ramos, P. (1988) J. Virol. 62, 1634-1639). The purified protein is a monomer as judged by its behavior in sucrose gradients and on gel filtration in the presence or absence of protamine. The initial rate of autophosphorylation using 3 mM MgCl2 is increased 20-30-fold by protamine. A maximum of 4-5 mol of phosphate are incorporated per mol of enzyme. The activity of the enzyme as a function of phosphorylation state was studied for three substrates: a synthetic dodecapeptide derived from the sequence of the major autophosphorylation site in the insulin receptor, poly(Glu, Tyr), 4:1, and histone 2B. Autophosphorylation of the protein to a stoichiometry of 4-5 mol of phosphate/mol increases its enzymatic activity as much as 200-fold; a 30-fold increase in activity occurs upon addition of 1 mol of phosphate/mol. The activities of unphosphorylated enzyme with the three substrates are 3.4, 2.3, and 0.44 nmol/min/mg, respectively. The activities of the autophosphorylated enzyme with the three substrates are 175, 274, and 45 nmol/min/mg, respectively. Exposure of the autophosphorylated enzyme to ADP results in a loss of phosphate from the enzyme which is associated with a decrease in enzymatic activity. Autophosphorylation of the kinase in the presence or absence of protamine displays a marked dependence on enzyme concentration. Furthermore, the rate of autophosphorylation decreases as the viscosity of the solution increases. Taken together, these data suggest that phosphorylation occurs via an intermolecular reaction.  相似文献   

19.
Using 0.4 m imidazole citrate buffer (pH 7.5) containing 0.1 mm l-cysteine, homodimeric starch phosphorylase from Corynebacterium calluane (CcStP) was dissociated into native-like folded subunits concomitant with release of pyridoxal 5'-phosphate and loss of activity. The inactivation rate of CcStP under resolution conditions at 30 degrees C was, respectively, four- and threefold reduced in two mutants, Arg234-->Ala and Arg242-->Ala, previously shown to cause thermostabilization of CcStP [Griessler, R., Schwarz, A., Mucha, J. & Nidetzky, B. (2003) Eur. J. Biochem.270, 2126-2136]. The proportion of original enzyme activity restored upon the reconstitution of wild-type and mutant apo-phosphorylases with pyridoxal 5'-phosphate was increased up to 4.5-fold by added phosphate. The effect on recovery of activity displayed a saturatable dependence on the phosphate concentration and results from interactions with the oxyanion that are specific to the quarternary state. Arg234-->Ala and Arg242-->Ala mutants showed, respectively, eight- and > 20-fold decreased apparent affinities for phosphate (K(app)), compared to the wild-type (K(app) approximately 6 mm). When reconstituted next to each other in solution, apo-protomers of CcStP and Escherichia coli maltodextrin phosphorylase did not detectably associate to hybrid dimers, indicating that structural complementarity among the different subunits was lacking. Pyridoxal-reconstituted CcStP was inactive but approximately 60% and 5% of wild-type activity could be rescued at pH 7.5 by phosphate (3 mm) and phosphite (5 mm), respectively. pH effects on catalytic rates were different for the native enzyme and pyridoxal-phosphorylase bound to phosphate and could reflect the differences in pK(a) values for the cofactor 5'-phosphate and the exogenous oxyanion.  相似文献   

20.
The binuclear iron cluster of uteroferrin in its reduced and enzymatically active pink form is sensitive to a variety or perturbants. Orthophosphate, in the presence or absence of oxygen, rapidly shifts the absorption maximum of pink uteroferrin from 510 to 545 nm, concurrently abolishing the protein's g'av = 1.74 EPR signal. Apparently, therefore, dioxygen is not required for phosphate-induced oxidation of the pink protein's ferrous iron. Pyrophosphate and arsenate produce changes which differ only in degree from those induced by phosphate, suggesting that all of these structurally similar competitive inhibitors bind to a common site. Molybdate, an inhibitor even more potent than phosphate, quantitatively converts the rhombic EPR signal of pink uteroferrin into an axial signal that remains invariant to subsequent additions of phosphate. Thus, there can be inhibition without oxidation, as further evidenced by the complex EPR spectrum of undiminished intensity produced by sulfate. Fluoride, too, induces an axial component in the EPR signal of pink uteroferrin, but at high concentration abolishes the signal entirely. Vanadate also drives the protein to its oxidized, EPR-silent state, serving as an electron acceptor itself to yield the characteristic g' = 2 signal of the vanadyl (VO2+) cation. Remarkably, however, the protein remains pink, demonstrating a dissociation between color and oxidation state. Guanidinium, in contrast, causes a sizeable red shift in the pink protein's absorption maximum without loss of EPR signal intensity, showing dissociation of color and oxidation state in a complementary way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号