首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female mating with multiple males in a single reproductive period, or polyandry, is a common phenomenon in animals. In this study we investigated variation in female mating behavior and its fitness consequences among three genetic strains of the red flour beetle, Tribolium castaneum. We found that the extent of polyandry and its fitness consequences varied significantly among the strains. In the first strain PRUZ, females mated multiply but incurred costs of polyandry in the form of reduced offspring production. Females of the second strain, NDG11, mated readily with multiple partners and benefited because polyandry led to higher offspring quality. Finally, TIW1 females were resistant to multiple mating and polyandry resulted in lower offspring production but improved offspring quality. Thus, in the first population we observed only costs of polyandry, in the second strain only benefits of polyandry whereas in the third we detected both costs and benefits of polyandry. Possible explanations for such a pattern are discussed.  相似文献   

2.
The consequences of polyandry for female fitness are controversial. Sexual conflict studies and a meta‐analysis of mating rates in insects suggest that there is a longevity cost when females mate repeatedly. Even so, compensatory material benefits can elevate egg production and fertility, partly because polyandry ensures an adequate sperm supply. Polyandry can therefore confer direct benefits. The main controversy surrounds genetic benefits. The argument is analogous to that surrounding the evolution of conventional female mate choice, except that with polyandry it is post‐copulatory mechanisms that might bias paternity towards males with higher breeding values for fitness. Recent meta‐analyses of extra‐pair copulations in birds have cast doubt on whether detectable genetic benefits exist. By contrast, another meta‐analysis showed that polyandry elevates egg hatching success (possibly due to a fertilization bias towards sperm with paternal genes that elevate embryo survival) in insects. A detailed summary of whether polyandry elevates other components of offspring performance is lacking. Here we present a comprehensive meta‐analysis of 232 effect sizes from 46 experimental studies. These experiments were specifically designed to try to quantify the potential genetic benefits of polyandry by controlling fully for the number of matings by females assigned to monandry and polyandry treatments. The bias‐corrected 95% confidence intervals for egg hatching success (d = ?0.01 to 0.61), clutch production (d = 0.07 to 0.45) and fertility (d = 0.04 to 0.40) all suggest that polyandry has a beneficial effect (although P values from parametric tests were marginally non‐significant at P = 0.075, 0.052 and 0.058, respectively). Polyandry was not significantly beneficial for any single offspring performance trait (e.g. growth rate, survival, adult size), but the test power was low due to small sample sizes (suggesting that many more studies are still needed). We then calculated a composite effect size that provides an index of general offspring performance. Depending on the model assumptions, the mean effect of polyandry was either significantly positive or marginally non‐significant. A possible role for publication bias is discussed. The magnitude of the reported potential genetic benefits (d = 0.07 to 0.19) are larger than those from two recent meta‐analyses comparing offspring sired by social and extra‐pair mates in birds (d = 0.02 to 0.04). This difference raises the intriguing possibility that cryptic, post‐copulatory female choice might be more likely to generate ‘good gene’ or ‘compatible gene’ benefits than female choice of mates based on the expression of secondary sexual traits.  相似文献   

3.
Polyandry is widespread despite its costs. The sexually selected sperm hypotheses (‘sexy’ and ‘good’ sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg‐to‐adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg‐to‐adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes.  相似文献   

4.
What drives mating system variation is a major question in evolutionary biology. Female multiple mating (polyandry) has diverse evolutionary consequences, and there are many potential benefits and costs of polyandry. However, our understanding of its evolution is biased towards studies enforcing monandry in polyandrous species. What drives and maintains variation in polyandry between individuals, genotypes, populations and species remains poorly understood. Genetic variation in polyandry may be actively maintained by selection, or arise by chance if polyandry is selectively neutral. In Drosophila pseudoobscura, there is genetic variation in polyandry between and within populations. We used isofemale lines to found replicate populations with high or low initial levels of polyandry and tracked polyandry under experimental evolution over seven generations. Polyandry remained relatively stable, reflecting the starting frequencies of the experimental populations. There were no clear fitness differences between high versus low polyandry genotypes, and there was no signature of balancing selection. We confirmed these patterns in direct comparisons between evolved and ancestral females and found no consequences of polyandry for female fecundity. The absence of differential selection even when initiating populations with major differences in polyandry casts some doubt on the importance of polyandry for female fitness.  相似文献   

5.
Melissococcus plutonius is a pathogenic bacterium affecting immature stages of the western honey bee (Apis mellifera) and leads to European foulbrood (EFB) disease. Despite EFB outbreaks increasing in frequency in several countries in recent decades, there is little knowledge on the epidemiology of M. plutonius or on the defence mechanisms of honey bees against this pathogen. Mating of honey bee queens with multiple males (polyandry) can be such a mechanism, as it has been shown to be beneficial to colony health and fitness. It is hypothesized that a high level of polyandry was selected for in response to pathogen pressure to maximize the probability that at least some patrilines among nestmates in a colony possess a high degree of resistance to specific pathogens, ultimately protecting colonies against infections. We show that M. plutonius infection provokes differential mortality among patrilines of immature honey bee workers. Such differences indicate a genetic origin of resistance against this pathogen—supporting the polyandry hypothesis—and open up avenues to improve control of EFB disease via selective breeding.  相似文献   

6.

Background  

The adaptive significance of female polyandry is currently under considerable debate. In non-resource based mating systems, indirect, i.e. genetic benefits have been proposed to be responsible for the fitness gain from polyandry. We studied the benefits of polyandry in the Arctic charr (Salvelinus alpinus) using an experimental design in which the material investments by the sires and maternal environmental effects were controlled.  相似文献   

7.
In anurans, female polyandry under male harassment is distributed across taxa because of external aquatic fertilization. According to the sexual selection theory, male–male competition for access to females is affected by the operational sex ratio (OSR) and population density. The Japanese common toad, Bufo japonicus, is widespread in mainland Japan, and like the European common toad, B. bufo, it engages in explosive breeding. In this study, we observed the breeding behaviour of B. japonicus in isolated local populations for over four years in two breeding ponds with different population sizes and densities: large‐low (L‐pond) and small‐high (S‐pond). We analysed the relative polyandry ratio in egg clutches laid by females and estimated the size‐assortative mating pattern to be an indicator of male–male competition in the two ponds. Both ponds tended to exhibit a size‐assortative mating pattern; however, the frequency of polyandry was different in the two ponds (L‐pond = 20% and S‐pond = 90%). Our results showed that polyandry could occur without multiple amplexus with a high population density, i.e. eggs were often fertilized by free‐swimming sperm in the small shallow pond. We propose that high female polyandry ratios without continuous male harassment are generated because of a male‐biased OSR and a high population density in the small pond. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 236–242.  相似文献   

8.
Although only one or just a few matings are considered sufficient to maximise a female's reproductive success, polyandry is a common mating system in insects and other animals. Female polyandry may either result from direct or indirect benefits of mating multiply, or from male harassment and thus sexual conflict over mating. Here, we test whether the latter is involved in determining female mating frequency in the butterfly Bicyclus anynana. We used a full‐factorial design with three different sex ratios and densities each, resulting in a total of nine treatment groups. Sex ratio but not density affected female mating frequency, which increased with an increasingly male‐biased sex ratio. Our results thus suggest that female polyandry in B. anynana results from sexual conflict, although females seem to be able to reject courting males at least to some extent. Therefore, polyandry in this species may occur in the first place from convenience, as the costs of resisting male harassment may be higher than mating repeatedly.  相似文献   

9.
This article tests the hypothesis that in the Nepal Himalayas the Tibetan sociocultural system (fraternal polyandry) reduces aggregate fertility whereas the Hindu system maximizes by early and virtually universal monogamous marriage. It is shown that while fraternal polyandry does reduce aggregate fertility, the hypothesis that it would lead to a substantially lower fertility rate is false because the effects of fraternal polyandry are roughly balanced by the effects of postwidowhood celibacy among the Hindus.This paper is the result of research undertaken in Nepal from 1975–1977. Support was provided in part by a National Science Foundation Dissertation Improvement Grant (BNS 76-00670) and grants from the Graduate Alumni Fund, Case Western Reserve University.  相似文献   

10.
Classical sexual selection theory assumes that the reproductive success of females is primarily limited by the resources available for egg production rather than by the number of mating partners. However, there is now accumulating evidence that multiple mating can entail fitness costs or benefits for females. In this study we investigated the effect of polyandry (i.e., the mating with different mating partners) and food availability on the reproductive output of the female sex function in an outcrossing simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. We exposed virgin worms to different group sizes, a treatment that has previously been shown to affect the level of polyandry in this species. Moreover, we manipulated the food availability throughout the subsequent egg laying period, during which the worms were kept in isolation. The number of offspring produced was used as an estimate of female fecundity. We found that food availability, but not group size, had a significant effect on female fecundity. Additionally, female fecundity was positively correlated with the number of stored sperm in the female sperm-storage organ at the time of isolation, but it was not correlated with body or ovary size of the worms. Our results suggest that female fecundity in M. lignano is primarily determined by the resources available for egg production, and not by the level of polyandry, confirming classic sexual selection theory for simultaneous hermaphrodites.  相似文献   

11.
We tested the impact of colony density and climatic conditions on the level of queen polyandry in different wild populations of the honeybee (Apis mellifera jemenitica). We identified the mating frequency of queens by genotyping worker offspring (n = 672) of 28 wild colonies with microsatellite DNA markers. The populations sampled in different climatic regions in Sudan showed a high variance for the queen mating frequency ranging from 9 to 23 estimated matings with an average of 14.00 ± 3.94 (13.16 ± 4.87 effective matings). The degree of polyandry was highly significantly correlated with the rainfall in the various regions. In general, more rainfall resulted in lower mating frequencies. Polyandry did not correlate with colony density or with genetic diversity of the local sample populations. This suggests that variation in polyandry in wild honeybee populations of Sudan is primarily driven by climatic differences among ecosystem variation rather than by the absolute or effective local honeybee population size.  相似文献   

12.
The evolution of female multiple mating, or polyandry, is difficult to comprehend and thus has been the subject of a large number of studies. However, there is only a little evidence for genetic variation in polyandry, although the evolution of a trait via selection requires genetic variation that enables the trait to respond to selection. We carried out artificial selection for increased and decreased female propensity to remate as a measure of polyandry to investigate whether this trait has a genetic component that can respond to selection in the adzuki bean beetle, Callosobruchus chinensis. Artificial selection produced responses in both directions and divergence between the selection lines in the female propensity to remate. Although the experimental design adopted in this study selected jointly for female receptivity to remating, which is a trait of females, and male ability to inhibit female remating—both of which are associated with female propensity to remate—the observed response to selection was attributable only to the female receptivity to remating. This study indicates that the female receptivity to remating has significant additive genetic variation and can evolve according to whether remating is advantageous or disadvantageous to females in C. chinensis.  相似文献   

13.
Evolution of Classical Polyandry: Three Steps to Female Emancipation   总被引:5,自引:0,他引:5  
Abstract In classical polyandry, sex roles are reversed and a female reproduces with several males, each of whom raises his offspring with little or no help from her. This mating system occurs in some fishes and birds, and it is of great interest in relation to parental investment, sex role and sexual selection theory. The evolution of classical polyandry, however, is debated and not well understood. It is here suggested to generally take place in three main steps. (1) First evolves male care for eggs, for reasons that differ between fishes and birds. (2) Second, a female becomes able to lay more eggs than a male can accommodate. This can happen, for example, by evolution of male pregnancy or smaller body size, or by female production of more or larger eggs, made possible by larger female body size or more food. Polyandry in several taxa is associated with shift to a habitat rich in food during the breeding season, to novel specialised foraging methods, or to both. A favourable food situation may be crucial for evolution of classical polyandry. (3) In step three, females compete to lay two or more clutches in sequence for different males. Successful polyandrous females obtain more offspring, spreading traits that enhance success in competition over males. Step three may be most likely in species with small body size, for reasons of reproductive constraints and seasonality. Evolution of classical polyandry appears to have followed these steps in shorebirds, coucals and pipefishes, but the reasons why certain species differ from their close phylogenetic relatives in being polyandrous are far from clear. Behavioural and ecological studies of additional species, and detailed phylogenies of taxa with diverse mating systems including polyandry, are needed for testing these ideas.  相似文献   

14.
Females of many organisms mate more than once and with more than one male, suggesting that polyandry confers some advantage to the female or her offspring. However, variation in maternal investment in response to mate choice and mate number can confound efforts to determine if there are benefits of polyandry. Access to multiple mates could increase maternal investment in offspring via a number of different mechanisms. Few studies have determined if investment is influenced by mate choice and number, and data are particularly lacking for marine invertebrates. This study was designed to determine if maternal investment and offspring size increase with access to increasing numbers of mates in the protandrous intertidal slipper snail Crepidula cf. marginalis. Virgin female slipper limpets were exposed to one, three, or five potential mates and their fecundity, egg size, and hatchling size were measured for multiple clutches. Treatment had a significant effect on fecundity, with fecundity increasing with the number of potential mates. Treatment did not have an effect on the size of eggs or hatchlings, on the variation in egg size or hatchling size within broods, or on the frequency of oviposition. Treatment did alter the variation in average offspring size among females, but not in the way predicted by theory. The main result, that access to multiple mates does not have an effect on per offspring maternal investment, makes C. cf. marginalis an ideal candidate to study the effects of polyandry on offspring fitness without having to take into account confounding effects of variation in maternal investment.  相似文献   

15.
Effects of polyandry versus monogamy were assessed for the beetle Phoracantha semipunctata (Coleoptera: Cerambycidae) by comparing measures of female reproductive success, including fecundity, egg viability, time until eclosion, and clutch size. The effect of intermittent presence or absence of a male was also evaluated. Polyandry was detrimental to female reproductive success in comparison to monogamy. Fecundity, egg viability, and clutch size were lower, and time to eclosion were increased for eggs from females with multiple mates compared with monogamous females. Intermittent presence of males had no effect on female reproductive success. Possible explanations for the decreased fecundity experienced by females with multiple mates include sperm competition intensity, costs of male harassment, and exceeding the optimal mating frequency. Females may reduce costs associated with polyandry by spending less time on host logs where mating occurs.  相似文献   

16.
17.
Females of many animal species mate several times with different males (polyandry), whereas females of some species mate with a single male (monandry) only once. Little is known about the mechanisms by which these different mating systems evolve. Females of Drosophila prolongata mate serially, unlike Drosophila melanogaster females that refuse to remate for several days after their first mating (remating suppression [RS]). Nevertheless, interestingly, nonvirgin D. prolongata females refuse to remate with males that are prohibited from performing their species-specific courtship behavior, leg vibration (LV), suggesting that LV overrides RS making it cryptic in D. prolongata. In this study, we examined how long this cryptic RS persists. Surprisingly, it was sustained for at least 2 weeks, showing that RS is substantially augmented in D. prolongata compared to that of D. melanogaster. The two most closely related species to D. prolongata, Drosophila rhopaloa and Drosophila carrolli, do not perform LV and showed augmented RS, supporting the idea that augmented RS could have evolved before LV was acquired. These results suggested that D. prolongata females are intrinsically monandrous, whereas the newly evolved courtship behavior makes them polyandrous. This is a rare case in which a proximate mechanism of polyandry evolution from monandry is demonstrated.  相似文献   

18.
We report two cases of simultaneous, social polyandry in the three-toed woodpecker Picoides tridactylus found in Berchtesgaden National Park, Germany during an 11-year study. The first case was between two neighbouring pairs in 2003. A female incubated both of her clutches during a period of at least 8 days. The second case was in 2004 between a widowed male and a female of a neighbouring pair. This time, a female divided parental care between her two clutches during a period of at least 27 days. We hypothesise that social polyandry in the three-toed woodpecker may be linked to the parental quality of the first male.  相似文献   

19.
This article documents a case of genetic polyandry in the oceanic and pelagic shortfin mako Isurus oxyrinchus and briefly comments on the implications of this finding.  相似文献   

20.
Within any one habitat, the relative fitness of organisms in a population can vary substantially. Social insects like the common wasp are among the most successful invasive animals, but show enormous variation in nest size and other fitness‐related traits. Some of this variation may be caused by pathogens such as viruses that can have serious consequences in social insects, which range from reduced productivity to colony death. Both individual immune responses and colony‐level traits such as genetic diversity are likely to influence effects of pathogen infections on colony fitness. Here we investigate how infections with Kashmir Bee Virus (KBV), immune response and intracolony genetic diversity (due to queen polyandry) affect nest size in the invasive common wasp Vespula vulgaris. We show that KBV is highly prevalent in wasps and expression of antiviral immune genes is significantly increased with higher viral loads across individuals. Patriline membership within a nest did not influence KBV susceptibility or immune response. A permutational MANCOVA revealed that polyandry, viral load and expression of the immune gene Dicer were significant predictors of variation in nest size. High intracolony genetic diversity due to polyandry has previously been hypothesized to improve colony‐level resistance to parasites and pathogens. Consistent with this hypothesis, we observed genetically diverse colonies to be significantly larger and to produce more queens, although this effect was not driven by the pathogen we investigated. Invasive wasps clearly suffer from pathogens and expend resources, as indicated here by elevated immune gene expression, toward reducing pathogen‐impact on colony fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号