首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cellular accumulation and efflux of the anionic fluorescent dye carboxy-2',7'-dichlorofluorescein (CF) were studied in rat liver SDVI cells thought to derive from primitive bile ductules, in order to characterize carrier-related membrane transport of organic anions in epithelial cells. Probenecid, a common blocker of anion transport, was found to strongly enhance CF levels in SDVI cells in a dose-dependent manner through inhibition of dye efflux. Such an outwardly-directed transport was demonstrated to be temperature-dependent and down-regulated by various metabolic inhibitors, therefore outlining its requirement for energy; it was shown to be Na+- and membrane potential-independent and inhibited by anionic drugs such as indomethacin, indoprofen and rifamycin B. These functional features are closed to those described for multidrug resistance-associated protein 1 (MRP1) that was furthermore demonstrated, in contrast to P-glycoprotein, to be expressed in SDVI cells and to lower CF accumulation in MRP1-overexpressing drug-resistant tumor cells. These data therefore suggest that active membrane transport of organic anions such as CF occurs in epithelial cells like cultured liver biliary SDVI cells through a MRP1-related efflux system.  相似文献   

3.
BACKGROUND: Normal and malignant hematopoietic stem cells are characterized by their capacity to actively extrude fluorescent dyes. The contribution of different ATP-binding cassette (ABC) transporters to this phenomenon is largely unknown due to the small stem cell numbers limiting the use of standard methods to assess functional efflux. METHODS: We used epifluorescence microscopy (EFM) in combination with single-cell image analysis to study ABC-transporter-mediated efflux in highly purified, viable, CD34+CD38- cells sorted on an adhesive biolayer. P-glycoprotein and multidrug-resistant protein (MRP)-mediated efflux were quantitated using fluorescent substrates (rhodamine-123 and calcein acetoxymethyl ester [calcein-AM]) and specific inhibitors (verapamil and probenecid, respectively). RESULTS: The feasibility, sensitivity, and reproducibility of rhodamine-123 efflux quantitation using single-cell EFM was shown in cell lines and compared with standard flow cytometric assessment. P-glycoprotein-mediated transport was higher in CD34+CD38- cells than in more differentiated progenitors (mean efflux index = 2.24 +/- 0.35 and 1.14 +/- 0.11, respectively; P = 0.01). P-glycoprotein-mediated transport was the main determinant of the rhodamine "dull" phenotype of these cells. In addition, significant MRP-mediated efflux was demonstrated in CD34+CD38- and CD38+ cells (mean efflux index = 1.42 +/- 0.19 and 1.28 +/- 0.18, respectively). CONCLUSION: The described method is a valuable tool for assessing ABC-transporter-mediated efflux in highly purified single cells. Both P-glycoprotein and MRP-mediated efflux are present in human CD34+CD38- hematopoietic stem cells.  相似文献   

4.
5.
Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.  相似文献   

6.
We employed human red blood cells as a model system to check the affinity of MRP1 (Multidrug Resistance-associated Protein 1) towards fluorescein and a set of its carboxyl derivatives: 5/6-carboxyfluorescein (CF), 2,7-bis-(2-carboxyethyl)-5/6-carboxyfluorescein (BCECF) and calcein (CAL). We found significant differences in the characteristics of transport of the dyes tested across the erythrocyte membrane. Fluorescein is transported mainly in a passive way, while active efflux systems at least partially contribute to the transport of the other compounds. Inside-out vesicle studies revealed that active transport of calcein is masked by another, ATP-independent, transport activity. Inhibitor profiles of CF and BCECF transport are typical for substrates of organic anion transporters. BCECF is transported mainly via MRP1, as proven by the use of QCRL3, a monoclonal antibody known to specifically inhibit MRP1-mediated transport. Lack of effect of QCRL3 on CF uptake excludes the possibility of MRP1 being a transporter of this dye. No inhibition of CF accumulation by cGMP, thioguanine and 6-mercaptopurine suggests also that this fluorescent marker is not a substrate for MRP5, another ABC transporter identified in the human erythrocyte membrane.  相似文献   

7.
8.
With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- ceils also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin^-CD45^-CD34^- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin^-CD45^-CD34^-differentiation into chondrocytes. Moreover, unlike CD34~ human hematopoietic stem cells, Lin^-CD45^-CD34^- cells were unable to proliferate or survive in liquid cultures, whereas single Lin^-CD45^-CD34^- cells were able to chimerize the inner cell mass (1CM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34^- cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.  相似文献   

9.
10.
11.
造血干细胞是具有自我更新能力并能分化为血液中各种血细胞组分的多能干细胞。近来研究显示,不同造血干细胞表面标志物标记的造血干细胞具有分化为不同血细胞的趋势,但是这种分化的内在关系仍不清楚。对小鼠CD34~-/Sca-1~+骨髓造血干细胞、外周血组成随小鼠年龄增长的变化情况进行了分析,结果显示:随着年龄的增长,骨髓中的CD34~-/Sca-1~+骨髓造血干细胞比率显著增加;而外周血各组分则随年龄变化呈现不同的趋势。对不同年龄段小鼠的骨髓造血干细胞及其他组分与外周血组分的同步分析发现,外周血中血小板密度变化趋势与CD34~-/Sca-1~+骨髓造血干细胞变化情况相关系数为0.804 8;外周血中淋巴细胞密度变化趋势与CD34~+/Sca-1~-骨髓细胞的变化情况相关系数为0.947 97;外周血中白细胞密度变化趋势与CD34~+/Sca-1~+骨髓细胞变化情况相关系数为0.763 1(大于0.9为极度相关,0.7到0.9为高度相关)。  相似文献   

12.
We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.  相似文献   

13.
Obesity complicates a number of diseases through mechanisms that are poorly defined. Mobilization and recruitment of progenitor cells to pathological sites is an important factor in disease progression. Here, we analyzed the influence of obesity on the systemic circulation of CD34+ cell populations and correlated frequencies of cells displaying previously established cell marker signatures with the BMI. Comparative analysis of peripheral blood mononuclear cells (PBMC) from 12 nonobese (BMI <30 kg/m2) and 14 obese (BMI >30 kg/m2) disease‐free donors by flow cytometry revealed that obesity is associated with a fivefold increased frequency of circulating progenitor cells (CPC), a population consisting of hematopoietic and endothelial precursors. Our data also indicate that obesity is associated with increased frequency of circulating mesenchymal stromal progenitor cells (MSC). In contrast, the frequencies of mature endothelial cells (EC) and CD34‐bright leukocytes are unaffected by obesity. Combined, our results indicate that obesity promotes mobilization of progenitor cells, which may have clinical relevance.  相似文献   

14.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

15.
16.

Background

The green fluorescent protein (GFP) has proven a useful marker in retroviral gene transfer studies targeting hematopoietic stem cells (HSCs) in mice. However, several investigators have reported very low in vivo peripheral blood marking levels in nonhuman primates after transplantation of HSCs transduced with the GFP gene. We retrovirally marked cynomolgus monkey HSCs with the GFP gene, and tracked in vivo marking levels within both bone marrow progenitor cells and mature peripheral blood cells following autologous transplantation after myeloablative conditioning.

Methods

Bone marrow cells were harvested from three cynomolgus macaques and enriched for the primitive fraction by CD34 selection. CD34+ cells were transduced with one of three retroviral vectors all expressing the GFP gene and were infused after myeloablative total body irradiation (500 cGy × 2). Following transplantation, proviral levels and fluorescence were monitored among clonogenic bone marrow progenitors and mature peripheral blood cells.

Results

Although 13–37% of transduced cells contained the GFP provirus and 11–13% fluoresced ex vivo, both provirus and fluorescence became almost undetectable in the peripheral blood within several months after transplantation regardless of the vectors used. However, on sampling of bone marrow at multiple time points, significant fractions (5–10%) of clonogenic progenitors contained the provirus and fluoresced ex vivo reflecting a significant discrepancy between GFP gene marking levels within bone marrow cells and their mature peripheral blood progeny. The discrepancy (at least one log) persisted for more than 1 year after transplantation. Since no cytotoxic T lymphocytes against GFP were detected in the animals, an immune response against GFP is an unlikely explanation for the low levels of transduced peripheral blood cells. Administration of granulocyte colony stimulating factor and stem cell factor resulted in mobilization of transduced bone marrow cells detectable as mature granulocyte progeny which expressed the GFP gene, suggesting that transduced progenitor cells in bone marrow could be mobilized into the peripheral blood and differentiated into granulocytes.

Conclusions

Low levels of GFP‐transduced mature cells in the peripheral blood of nonhuman primates may reflect a block to differentiation associated with GFP; this block can be overcome in part by nonphysiological cytokine treatment ex vivo and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

17.
18.
目的:探索简便易行的外周血纤维细胞体外分离、培养方法极其生物学特征与功能.方法:采用Ficoll密度梯度离心分离法分离成人外周血,所获得的白细胞在一定条件要求下体外培养,采用流式细胞技术、细胞免疫荧光染色等对贴壁生长的成纤维样细胞进行鉴定,在扫描电镜下进一步观察其形态结构.结果:培养至第14天时,外周血纤维细胞开始分化成熟.血液来源的取材、首次换液的时间、细胞的接种密度、血清浓度等多种因素均会对外周血纤维细胞的培养造成影响.免疫荧光染色结果显示培养至12天时CD34和COL Ⅰ均为强阳性表达,继续培养至28天时,血液来源的细胞表面抗原CD34发生明显丢失,免疫荧光染色几乎不能显色;相反COL Ⅰ持续表达阳性,取培养14天的贴壁细胞,经流式细胞仪分析,Col Ⅰ+细胞为81.6%,显示PBFCs不断向成纤维细胞分化的特性.结论:采用密度梯度离心法配合适当的培养条件,成人外周血中存在的前体细胞经体外分离、培养可分化为外用血纤维细胞,并保持其生物学特性.  相似文献   

19.
The objective of this study was to examine effects of interleukin-6 (IL-6) on the expression and activity of the drug resistance transporters (MDR1 and MRP) in human hepatoma cell lines. Expression and activity of MDR1 and MRP transporters were examined in IL-6-treated and control HuH 7 and HepG2 cells using semi-quantitative RT-PCR analysis and by rhodamine 123 and 5-carboxyfluorescin efflux assays. Results from RT-PCR demonstrated expression of MRP3, MRP6, and MDR1 in HuH 7 cells and expression of MRP1, MRP2, MRP3, MRP6, and MDR1 in HepG2 cells. Compared with controls, treatment of HuH 7 cells with IL-6 (10 ng/mL, 24 h) resulted in a 1.8-fold increase in MRP-mediated efflux of 5-CF with a corresponding 1.5-fold induction of MRP3 mRNA levels (p < 0.05). Similarly, in HepG2 cells, a 2-fold increase in MRP functional activity and a 1.8-fold induction of MRP1 mRNA levels were seen in the IL-6 treated cells (p < 0.05). Treatment of cells with IL-6 was also found to cause significant reductions in the expression and activity of MDR1 in HuH 7 cells, but not in HepG2 cells. Our data suggest that IL-6 induces MRP expression and activity in human hepatoma cell lines. Suppressive effects of IL-6 on MDR1 expression and activity were also observed in HuH 7 cells. This underscores the importance of examining the regulation of multiple drug resistance proteins as these proteins may have opposing regulatory mechanisms in malignant cells.  相似文献   

20.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号