首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive syndrome characterised by profound congenital sensorineural deafness and prolongation of the QT interval on the electrocardiogram, representing abnormal ventricular repolarisation. In a study of ten British and Norwegian families with JLNS, we have identified all of the mutations in the KCNQ1 gene, including two that are novel. Of the nine mutations identified in this group of 10 families, five are nonsense or frameshift mutations. Truncation of the protein proximal to the recently identified C-terminal assembly domain is expected to preclude assembly of KCNQ1 monomers into tetramers and explains the recessive inheritance of JLNS. However, study of a frameshift mutation, with a dominant effect phenotypically, suggests the presence of another assembly domain nearer to the N-terminus.  相似文献   

2.
3.
Analysis of candidate genes for genotypic diagnosis in the long QT syndrome   总被引:1,自引:0,他引:1  
Patients with the long QT syndrome (LQTS) suffer from cardiac arrhythmias that can lead to abrupt loss of consciousness and sudden death, already in young individuals. Thus, an early diagnosis of LQTS is essential for patients and their family members. So far, six genes (KCNQ1, HERG, SCN5A, ANK2, KCNE1, KCNE2) have been demonstrated to be involved in the development of LQTS. Since this syndrome is genetically heterogeneous and large-sized families are often not available for linkage analysis, alternative tools are required for a genetic diagnosis. To investigate genes with numerous exons, like KCNQ1, HERG, SCN5A and ANK2, segregation analysis of a Polish Romano-Ward family with eight members was performed as a reliable method faster than linkage analysis or direct sequencing. To test these four LQT loci, an appropriate selection of microsatellite markers covering different chromosomal regions was applied. Furthermore, two small genes KCNE1 and KCNE2 (at the LQT5 and LQT6 loci), and the SGK1 gene (encoding a kinase regulating KCNE1 and SCN5A channels) were sequenced. All six LQT loci and the SGK1 gene were excluded by these analyses, thus a different pathogenic mechanism of LQT syndromes can be presumed.  相似文献   

4.
The Romano Ward long QT syndrome (LQTS) has an autosomal dominant mode of inheritance. Patients suffer from syncopal attacks often resulting in sudden cardiac death. The main diagnostic parameter is a prolonged QT(c) interval as judged by electro-cardiographic investigation. LQTS is a genetically heterogeneous disease with four loci having been identified to date: chromosome 11p15.5 (LQT1), 7q35–36 (LQT2), 3p21–24 (LQT3) and 4q25–26 (LQT4). The corresponding genes code for potassium channels KVLQT1 (LQT1)and HERG (LQT2) and the sodium channel SCN5A (LQT3). The KVLQT1 gene is characterized by six transmembrane domains (S1– S6), a pore region situated between the S5 and S6 domains and a C-terminal domain accounting for approximately 60% of the channel. This domain is thought to be co-associated with another protein, viz. minK (minimal potassium channel). We have studied a Romano Ward family with several affected individuals showing a severe LQTS phenotype (syncopes and occurrence of sudden death). Most affected individuals had considerable prolongations of QT(c). By using haplotyping with a set of markers covering the four LQT loci, strong linkage was established to the LQT1 locus, whereas the other loci (LQT2, LQT3 and LQT4) could be excluded. Single-strand conformation polymorphism analysis and direct sequencing were used to screen the KVLQT1 gene for mutations in the S1–S6 region, including the pore domain. We identified a Gly-216-Arg substitution in the S6 transmembrane domain of KVLQT1. The mutation was present in all affected family members but absent in normal control individuals, providing evidence that the mutated KVLQT1-gene product indeed caused LQTS in this family. The mutated KVLQT1-gene product thus probably results in a dominant negative suppression of channel activity. Received: 25 March 1997 / Accepted: 21 April 1997  相似文献   

5.
Inherited long QT syndrome is most frequently associated with mutations in KCNQ1, which encodes the primary subunit of a potassium channel. Patients with mutations in KCNQ1 may show only the cardiac defect (Romano-Ward syndrome or RWS) or may also have severe deafness (Jervell and Lange-Nielsen syndrome or JLNS). Targeted disruption of mouse Kcnq1 models JLNS in that mice are deaf and show abnormal ECGs. However, the phenotype is broader than that seen in patients. Most dramatically, the inner ear defects result in a severe hyperactivity/circling behavior, which may influence cardiac function. To understand the etiology of the cardiac phenotype in these mice and to generate a potentially more useful model system, we generated new mouse lines by introducing point mutations associated with RWS. The A340E line phenocopies RWS: the repolarization phenotype is inherited in a dominant manner and is observed independent of any inner ear defect. The T311I line phenocopies JLNS, with deafness associated with inner hair cell malfunction.  相似文献   

6.
Congenital long QT syndrome (LQTS) is a hereditary disorder that leads to sudden cardiac death secondary to fatal cardiac arrhythmias. Although many genes for LQTS have been described, the etiology remains unknown in 30%–40% of cases. In the present study, a large Chinese family (four generations, 49 individuals) with autosomal-dominant LQTS was clinically evaluated. Genome-wide linkage analysis was performed by using polymorphic microsatellite markers to map the genetic locus, and positional candidate genes were screened by sequencing for mutations. The expression pattern and functional characteristics of the mutated protein were investigated by western blotting and patch-clamp electrophysiology. The genetic locus of the LQTS-associated gene was mapped to chromosome 11q23.3-24.3. A heterozygous mutation (Kir3.4-Gly387Arg) was identified in the G protein-coupled, inwardly rectifying potassium channel subunit Kir3.4, encoded by the KCNJ5 gene. The Kir3.4-Gly387Arg mutation was present in all nine affected family members and absent in 528 ethnically matched controls. Western blotting of human cardiac tissue demonstrated significant Kir3.4 expression levels in the cardiac ventricles. Heterologous expression studies with Kir3.4-Gly387Arg revealed a loss-of-function electrophysiological phenotype resulting from reduced plasma membrane expression. Our findings suggest a role for Kir3.4 in the etiology of LQTS.  相似文献   

7.
The objective was to analyze the clinical and molecular findings in a cohort of neonates and infants with the autosomal dominant long QT syndrome (LQTS). Those affected face a high risk of ventricular arrhythmia resulting in syncope, seizure or sudden death. Blood samples submitted for molecular diagnostic studies on 7 infants were subject to DNA extraction and mutation analysis of 18 selected exons in 5 LQTS genes (KCNQ1, HERG, SCN5A, KCNE1, and KCNE2). We detected 11 mutations in these 7 patients. Four patients had 2 mutations in 1 gene (compound heterozygotes) or 2 different genes (digenic inheritance), while 3 patients had 1 mutation each. Except for 1 mutation in KCNE1, all other mutations were detected alone or in combination within HERG and the SCN5A genes. Four of the mutations we found are novel. The lethal nature of the LQTS demands careful attention to the family history and prompt and precise diagnosis and treatment with serious consideration of endocardial pacemaker implantation. While much larger studies are needed, our data suggest that compound heterozygotes or those with 2 mutations in different genes are likely to have a more severe LQTS including early manifestations in neonates and infants.  相似文献   

8.
Long QT syndrome (LQTS) is a hereditary arrhythmia caused by mutations in genes for cardiac ion channels, including a potassium channel, KvLQT1. Inheritance of LQTS is usually autosomal-dominant, but autosomal-recessive inheritance can be observed in patients with LQTS accompanied by hearing loss. In this study, we investigated the functional alterations caused by KCNQ1 mutations, a deletion (delV595) and a frameshift (P631fs/19), which were identified in compound heterozygous state in two patients with autosomal-recessive LQTS not accompanied by hearing loss. Functional analyses showed that both mutations impaired cell surface expression due to trafficking defects. The mutations severely affected outward potassium currents without apparent dominant negative effects. It was found that delV595 impaired subunit binding, whereas P631fs/19 was retained in endoplasmic reticulum due to the newly added 19-amino acid sequence containing two retention motifs (R633GR and R646LR). This is the first report of novel mechanisms for trafficking abnormality of cardiac ion channels, providing us new insights into the molecular mechanisms of LQTS.  相似文献   

9.
The long QT syndrome (LQTS) is a monogenic disorder characterized by prolongation of the QT interval on electrocardiogram and syncope or sudden death caused by polymorphic ventricular tachycardia (torsades de pointes). In general, mutations in cardiac ion channel genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2) have been identified as a cause for LQTS. About 50-60 % of LQTS patients have an identifiable LQTS causing mutation in one of mentioned genes. In a group of 12 LQTS patients with no identified mutations in these genes we have tested a hypothesis that other candidate genes could be involved in LQTS pathophysiology. SCN1B and KCND3 genes encode ion channel proteins, ANK2 gene encodes cytoskeletal protein interacting with ion channels. To screen coding regions of genes SCN1B, KCND3, and 10 exons of ANK2 following methods were used: PCR, SSCP, and DNA sequencing. Five polymorphisms were found in screened candidate genes, 2 polymorphisms in KCND3 and 3 in SCN1B. None of found polymorphisms has coding effect nor is located close to splice sites or has any similarity to known splicing enhancer motifs. Polymorphism G246T in SCN1B is a novel one. No mutation directly causing LQTS was found. Molecular mechanism of LQTS genesis in these patients remains unclear.  相似文献   

10.
The LQT1 locus (KCNQ1) has been correlated with the most common form of inherited long QT (LQT) syndrome. LQT patients suffer from syncopal episodes and high risk of sudden death. The KCNQ1 gene encodes KvLQT1 alpha-subunits, which together with auxiliary IsK (KCNE1, minK) subunits form IK(s) K(+) channels. Mutant KvLQT1 subunits may be associated either with an autosomal dominant form of inherited LQT, Romano-Ward syndrome, or an autosomal recessive form, Jervell and Lange-Nielsen syndrome (JLNS). We have identified a small domain between residues 589 and 620 in the KvLQT1 C-terminus, which may function as an assembly domain for KvLQT1 subunits. KvLQT1 C-termini do not assemble and KvLQT1 subunits do not express functional K(+) channels without this domain. We showed that a JLN deletion-insertion mutation at KvLQT1 residue 544 eliminates important parts of the C-terminal assembly domain. Therefore, JLN mutants may be defective in KvLQT1 subunit assembly. The results provide a molecular basis for the clinical observation that heterozygous JLN carriers show slight cardiac dysfunctions and that the severe JLNS phenotype is characterized by the absence of KvLQT1 channel.  相似文献   

11.
Holt-Oram syndrome (HOS) is a developmental disorder inherited in an autosomal-dominant pattern. Affected organs are the heart and forelimbs with upper extremity skeletal defects and congenital heart malformation. In this study we present three cases of HOS in the same family. In one of these three individuals we detected a transition of C to T (CTG-GTT, V205V) in exon 7 of the TBX5 gene. This nucleotide change causes no amino acid change and potential pathologic effects remain unknown.Key Words: Holt-Oram syndrome, Congenital heart malformation, TBX5 gene  相似文献   

12.
Long QT syndrome (LQTS), is an inherited cardiac disorder in which ventricular tachyarrhythmias predispose affected individuals to syncope, seizures, and sudden death. Characteristic electrocardiographic findings include a prolonged QT interval, T wave alternans, and notched T waves. We have screened LQTS patients from 89 families for mutations in the pore region of HERG , the K+ channel gene previously associated with chromosome 7-linked LQT2. In six unrelated LQTS kindreds, single-strand conformation polymorphism analyses identified aberrant conformers in all affected family members. These conformers were not seen in over 100 unaffected, unrelated control individuals, suggesting that they represent pathogenic LQTS mutations. DNA sequence analyses of the aberrant conformers demonstrated that they reflect five different missense mutations: V612L, A614V, N629D, N629S, and N633S. The missense mutation A614V was found in two unrelated families. Further functional studies will be required to determine what effect each of these changes may have on HERG channel function. Received: 15 July 1997 / Accepted: 10 November 1997  相似文献   

13.
To elucidate the role of the KVLQT1 gene in the pathogenesis of long QT syndrome (LQTS), we have established a screening system for detecting KVLQT1 mutations by the polymerase chain reaction-single strand conformation polymorphism technique (PCR-SSCP). We first determined exon/intron boundaries and flanking intronic sequences, and found that the KVLQT1 gene consists of 17 coding exons. Subsequently, we synthesized oligonucleotide primers to cover the coding region and the flanking intronic sequences, and searched for mutations in 31 Japanese LQTS families. When genomic DNA from each proband was examined by PCR-SSCP followed by direct DNA sequencing, mutations were detected in five families; two independent families carried the same mutation and three of the four were novel. Each mutation was present in affected relatives of the respective proband. This work will enable us to search more thoroughly for LQTS mutations associated with KVLQT1, and eventually will help us in finding genotype/phenotype relationships. Received: 20 March 1998 / Accepted: 30 April 1998  相似文献   

14.
Long QT syndrome (LQT) is a cardiac disorder that causes sudden death from ventricular tachyarrhythmias, specifically torsade de pointes. Two types of LQT have been reported, autosomal-dominant LQT (Romano–Ward syndrome) and autosomal-recessive LQT (Jervell and Lange-Nielsen syndrome); Jervell and Lange-Nielsen syndrome is also associated with deafness. Four LQT genes have been identified for autosomal-dominant LQT: K+ channel genes KVLQT1 on chromosome 11p15.5, HERG on 7q35–36 and minK on 21q22, and the cardiac Na+ channel gene SCN5A on chromosome 3p21–24. Two genes, KVLQT1 and minK, have been identified for Jervell and Lange-Nielsen syndrome. Genetic testing and gene-specific therapies are available for some LQT patients.  相似文献   

15.
Mutations of the cyclic nucleotide binding domain (CNBD) may disrupt human ether-a-go-go-related gene (hERG) K(+) channel function and lead to hereditary long QT syndrome (LQTS). We identified a novel missense mutation located in close proximity to the CNBD, hERG R744P, in a patient presenting with recurrent syncope and aborted cardiac death triggered by sudden auditory stimuli. Functional properties of wild type (WT) and mutant hERG R744P subunits were studied in Xenopus laevis oocytes using two-electrode voltage clamp electrophysiology and Western blot analysis. HERG R744P channels exhibited reduced activating currents compared to hERG WT (1.48±0.26 versus 3.40±0.29μA; n=40). These findings were confirmed by tail current analysis (hERG R744P, 0.53±0.07μA; hERG WT, 0.97±0.06μA; n=40). Cell surface trafficking of hERG R744P protein subunits was not impaired. To simulate the autosomal-dominant inheritance associated with LQTS, WT and R744P subunits were co-expressed in equimolar ratio. Mean activating and tail currents were reduced by 32% and 25% compared to hERG WT (n=40), indicating that R744P protein did not exert dominant-negative effects on WT channels. The half-maximal activation voltage was not significantly affected by the R744P mutation. This study highlights the significance of in vitro testing to provide mechanistic evidence for pathogenicity of mutations identified in LQTS. The functional defect associated with hERG R744P serves as molecular basis for LQTS in the index patient.  相似文献   

16.
The long QT syndrome (LQTS) is a disorder of ventricular repolarization that exposes affected individuals to cardiac arrhythmias and sudden death. The first gene for LQTS has been mapped to chromosome 11 p.15.5 by genome-wide linkage analysis. This gene, originally named KVLQT1 (and later KCNQ1), is a novel potassium channel gene. Mutations in the human KVLQT1 gene, encoding the alpha-subunit of the KVLQT1 channel, cause the long QT syndrome. In this work, we analysed the sequence of six KVLQT1 exons in patients with various heart pathologies. We describe 6 different mSSCP patterns with no disease-related SSCP conformers in any sample. Direct sequencing of exons 2 to 7 confirmed the absence of mutations. This suggests that the analysed region of the KVLQT1 gene is not commonly involved in pathogenesis of the long QT syndrome.  相似文献   

17.
Heterogeneity in clinical manifestations is a well-known feature in Long QT Syndrome (LQTS). The extent of this phenomenon became evident in families wherein both symptomatic and asymptomatic family members are reported. The study hence warrants genetic testing and/or screening of family members of LQTS probands for risk stratification and prediction.Of the 46 families screened, 18 probands revealed novel variations/compound heterozygosity in the gene/s screened. Families 1–4 revealed probands carrying novel variations in KCNQ1 gene along with compound heterozygosity of risk genotypes of the SCN5A, KCNE1 and NPPA gene/s polymorphisms screened. It was also observed that families- 5, 6 and 7 were typical cases of “anticipation” in which both mother and child were diagnosed with congenital LQTS (cLQTS). Families- 16 and 17 represented aLQTS probands with variations in IKs and INa encoding genes. First degree relatives (FDRs) carrying the same haplotype as the proband were also identified which may help in predictive testing and management of LQTS. Most of the probands exhibiting a family history were found to be genetic compounds which clearly points to the role of cardiac genes and their modifiers in a recessive fashion in LQTS manifestation.  相似文献   

18.
Clinical-genetic examination of 50 patients with menopause praecox syndrome has been performed. The results of the examination show genetic syndrome heterogeneity. Chromosomal and gene mutations take part in the syndrome pathogenesis. Chromosomal abnormalities frequency is 12%. Chromosomal aberrations are presented by different mosaicism types of sex chromosomes. Monogenic syndrome genesis with different inheritance types of the pathologic gene is determined: autosomal-recessive or autosomal-dominant.  相似文献   

19.
Patients with congenital long-QT syndrome (LQTS) are at increased risk of ventricular arrhythmias during stressful situations. Large-scale studies have pointed out that affected individuals are particularly at risk in the period following pregnancy (post-partum). This is recognised especially for women with an LQTS type 2. Here, we describe two cases of young women with LQTS type 2, both admitted to our institution with symptomatic torsades de pointes a few weeks after delivery. Both patients carried a mutation in the KCNH2 gene. One patient was nullipara, while the other had had an uneventful previous pregnancy. In both cases treatment with a β-blocker did not prevent life-threatening cardiac arrhythmias. The risk of arrhythmias is thought to gradually decrease to pre-pregnancy values in the nine months after delivery. Considering the difficulties related to continuous monitoring of a patient for such a long period and the desire of these patients to have more children in the foreseeable future, ICD implantation was performed. (Neth Heart J 2008;16:422-5.)  相似文献   

20.
Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号