首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shkel IA  Record MT 《Biochemistry》2004,43(22):7090-7101
For nucleic acid oligomers with variable chain lengths, the salt concentration ([salt]) dependences of the denaturation temperature (T(m)) and of the free energy of helix formation at 37 degrees C (Delta) are predicted using nonlinear Poisson-Boltzmann (NLPB) calculations. Analysis of experimental data reveals that the ratio of the [salt] derivative of melting temperature (ST(m) = dT(m)/d log[salt]) to the value for a polymer with the same base composition (ST(m)/ST(m, infinity)) is independent of base composition but strongly dependent on the number of DNA charges (/Z/) below approximately 8 bp for two-strand helices (formed from association of two complementary strands) and below approximately 18 bp for hairpin helices (formed from folding of one self-complementary strand). We interpret these ST(m)/ST(m, infinity) ratios in terms of the ratio of thermodynamic ion release from the oligomer (Deltan(u), per charge) to that from the same oligomer embedded in polymeric DNA (Deltan(u, infinity), per charge). Experimental values of ST(m)/ST(m, infinity) and its dependence on /Z/ are in good agreement with NLPB predictions for a preaveraged (essential structural) model of DNA. In particular, the NLPB calculations describe the stronger /Z/ dependence of ST(m) observed for melting of oligomeric hairpin helices than for melting of two-strand helices. These calculations predict an experimentally detectable (>or=10%) difference between ST(m) and ST(m, infinity) which increases strongly with decreasing length for two-strand helix lengths of <15 bp and for hairpin helix lengths of <30 bp. From NLPB values of Deltan(u)/Deltan(u, infinity), we predict Delta as a function of [salt] and /Z/. Predictions of thermodynamic and thermal stabilities of oligomeric helices as functions of length and [salt] are consistent with and represent a significant refinement of the average oligomer salt effect currently in use in nearest neighbor stability predictions.  相似文献   

2.
The effect of the distribution of charged residues on stability of alpha helices in isolated peptides and in globular proteins exemplified by myoglobins from 62 different species is discussed. A highly simplified set of rules is used to account for the interaction of charged groups with the dipole of an alpha helix. Only the position and sign of a charge with respect to the center of the helix and its ability to participate in intrahelical salt bridges determine its effect. These rules lead to a linear correlation between the helicity in variant C-peptide helices from RNAse and the extent to which the charge distribution opposes the helix dipole. Of the sample of 496 helices in the myoglobins studied, 456 exhibit arrangements of charges which oppose the effective dipole moment of the helix according to this calculation. A number of variants occur which leave the backbone moment of helices A-D unchanged, or even add to it. However no such variants exist in the sequences of helices E-H. We suggest that the E, F, G and H helices in myoglobins which show the strongest reversal of the helix dipole participate in the structures of early intermediates in folding of the chain. Stable helix structures should be more likely to occur in these isolated sequences also, and introduction of charge alterations in helices E to H should affect the initial refolding rate of mutant myoglobins.  相似文献   

3.
The structural implications arising from the observation (set forth in the preceding paper) that the charge density of a single-stranded randomly coiling polynucleotide chain is approximately equal to that of one strand of the familiar double helix are here examined. A computational scheme is described to obtain (using bond lengths, valence bond angles, and internal rotation angles) the mean phosphate–phosphate spacing parameter b along the chain axes of any single-stranded polynucleotide molecule. Attention is then focused upon the computed interphosphate spacing associated with both the theoretical randomly coiling polynucleotide that reproduces the observed experimental unperturbed dimensions and the familiar single-stranded helix. The calculations clearly demonstrate that the parameter b only weakly reflects the spatial configuration of the chain. The approximate equivalence of the b values associated with the single-stranded helix and the unperturbed randomly coiling polynucleotide is not indicative of strong configurational similarities between the two forms. The familiar helix is composed of a sequence of identically conformed compact structural residues while the random coil is characterized by a variety of chain-repeating residues of which a large proportion are extended units.  相似文献   

4.
N Tomioka  A Itai 《Biopolymers》1992,32(12):1593-1597
A three-dimensional model of DNA/RNA triple helix that contains a poly(L-deoxyadenosine) (L-dA) chain is proposed based on computer-assisted model building and energy calculations. The model building was performed by a new method that systematically searches possible conformations of nucleotide units in the helical chains. Two possible orientations of sugar-phosphate chains, in which two homopyrimidine strands are parallel or antiparallel with each other, were considered in the systematic search. Several possible base-pairing models, in which there are one Watson-Crick base pair and one other base pair, were also considered. Many possible models selected by the systematic search were further refined through molecular mechanics calculation incorporating a helical boundary condition. The preferred model, which was selected on the basis of potential energy, was the one with Watson-Crick and Hoogsteen base pairs and with its two polypyrimidine chains in the antiparallel orientation. The model can explain the experimental observation that poly(L-dA) forms a stable triple helix with poly(uridylic acid) (U) but not with poly(deoxythymidylic acid) (dT).  相似文献   

5.
Simulated annealing approach to the study of protein structures   总被引:1,自引:0,他引:1  
One of the most difficult problems in predicting the three dimensional structure of proteins is how to deal with the local minimum problem. In many cases of practical interest this problem has been reduced to how to select an appropriate set of starting conformations for carrying out energy minimizations. How these starting conformations are selected, however, is often based on the physical intuition of the person doing the calculations, and hence it is hard to avoid bearing some sort of arbitrariness. To improve such a situation, we introduced the simulated annealing Monte Carlo algorithm to locate the optimal starting conformations for energy minimizations. The method developed here is valid for both single and multiple polypeptide chain systems. The annealing process can be conducted with respect to either the internal dihedral angles of a polypeptide chain or the external rotations and translations of various constituent polypeptide chains, and hence is particularly useful for studying the packing arrangements of secondary structures in proteins, such as helix/helix packing, helix/sheet packing and sheet/sheet packing. It was shown via a number of comparative calculations that the final structures obtained through the annealing process not only had lower energies than the corresponding energy-minimized structures reported previously, but also assumed the forms closer to the observations in proteins. All these results indicate that a better result can be obtained in search of low-energy structures of proteins by incorporating the simulated annealing approach.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Errington N  Doig AJ 《Biochemistry》2005,44(20):7553-7558
Phosphorylation is ubiquitous in control of protein activity, yet its effects on protein structure are poorly understood. Here we investigate the effect of serine phosphorylation in the interior of an alpha-helix when a salt bridge is present between the phosphate group and a positively charged side chain (in this case lysine) at i,i + 4 spacing. The stabilization of the helix is considerable and can overcome the intrinsically low preference of phosphoserine for the interior of the helix. The effect is pH dependent, as both the lysine and phosphate groups are titratable, and so calculations are given for several charge combinations. These results, with our previous work, highlight the different, context-dependent effects of phosphorylation in the alpha-helix. The interaction between the phosphate(2)(-) group and the lysine side chain is the strongest yet recorded in helix-coil studies. The results are of interest both in de novo design of peptides and in understanding the structural modes of control by phosphorylation.  相似文献   

7.
Computer simulation of the dynamic structure of DNA can be carried out at various levels of resolution. Detailed high resolution information about the motions of DNA is typically collected for the atoms in a few turns of double helix. At low resolution, by contrast, the sequence-dependence features of DNA are usually neglected and molecules with thousands of base pairs are treated as ideal elastic rods. The present normal mode analysis of DNA in terms of six base-pair "step" parameters per chain residue addresses the dynamic structure of the double helix at intermediate resolution, i.e., the mesoscopic level of a few hundred base pairs. Sequence-dependent effects are incorporated into the calculations by taking advantage of "knowledge-based" harmonic energy functions deduced from the mean values and dispersion of the base-pair "step" parameters in high-resolution DNA crystal structures. Spatial arrangements sampled along the dominant low frequency modes have end-to-end distances comparable to those of exact polymer models which incorporate all possible chain configurations. The normal mode analysis accounts for the overall bending, i.e., persistence length, of the double helix and shows how known discrepancies in the measured twisting constants of long DNA molecules could originate in the deformability of neighboring base-pair steps. The calculations also reveal how the natural coupling of local conformational variables affects the global motions of DNA. Successful correspondence of the computed stretching modulus with experimental data requires that the DNA base pairs be inclined with respect to the direction of stretching, with chain extension effected by low energy transverse motions that preserve the strong van der Waals' attractions of neighboring base-pair planes. The calculations further show how one can "engineer" the macroscopic properties of DNA in terms of dimer deformability so that polymers which are intrinsically straight in the equilibrium state exhibit the mesoscopic bending anisotropy essential to DNA curvature and loop formation.  相似文献   

8.
The conformational preferences of the monomeric units of a series of poly(α-alkyl-β-L-aspartate)s were examined by quantum mechanical calculations. α-Alkyl-β-aspartamyl m-oligopeptides with a number of residues m ranging from 1 to 7 and arranged in the conformations experimentally observed for their corresponding polymers were computed. Both their total relative energies and their cooperative energy differences were compared as a function of the length of the oligopeptide and the nature of the alkyl side group. Results revealed that the 13/4 helical arrangement is the most stable structure for the isolated polymer chain for any side group, although a 17/4 helix becomes favored in the case of methyl and ethyl groups due to the packing effects. On the other hand, the stability of the 4/1 helix appears to be the preferred conformation for side groups with a branched constitution. © 1997 John Wiley & Sons, Inc. Biopoly 41: 721–729, 1997  相似文献   

9.
B Maigret  D Perahia  B Pullman 《Biopolymers》1971,10(9):1649-1660
Quantum-mechanical calculations on the conformational energy map and stereo-chemical rotational states of aminoacid residues by the PCILO method are extended to the asparaginyl, glutaminyl, aspartyl and glutamyl residues in their neutral form. One of the most outstanding features of the results is the occurrence of the global minimum (or of one of a few equivalent global minima) in the region of the left handed α-helix for the first three of the above mentioned residues. The results of the calculations are compared with experimental data from eight, globular proteins which confirm that these residues may exist, in fact, in this conformation. They also enable to understand the experimentally observed possibility of helix reversal in esters of poly-L -aspartic acid as a function of substitutions in the side chain.  相似文献   

10.
Wang Z  Plaxco KW  Makarov DE 《Biopolymers》2007,86(4):321-328
Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, alpha helix and Polyproline II (PPII) helix, on the dimensions of random coil polyalanine chains viewed as a model of highly denatured proteins. We find that although Flory's power law scaling, long regarded as a signature of random coil behavior, holds for chains containing up to 90% alpha or PPII helix, the absolute magnitude of the chain dimensions is sensitive to helix content. As residual alpha helix content increases, the chain contracts until it reaches a minimum radius at approximately 70% helix, after which the chain dimensions expand rapidly. With an alpha helix content of approximately 20%, corresponding to the Ramachandran probability of being in the helical basin, experimentally observed radii of gyration are recovered. Experimental radii are similarly recovered at an alpha helix content of approximately 87%, providing an explanation for the previously puzzling experimental finding that the dimensions of the highly helical methanol-induced unfolded state are experimentally indistinguishable from those of the helix-poor urea-unfolded state. In contrast, the radius of gyration increases monotonically with increasing PPII content, and is always more expanded than the dimensions observed experimentally. These results suggest that PPII is unlikely the sole, dominant preferred conformation for unfolded proteins.  相似文献   

11.
We have used the elementary generator matrices outlined in the preceding paper to examine the conformational plasticity of the nucleic acid double helix. Here we investigate kinked DNA structures made up of alternating B- and A-type helices and intrinsically curved duplexes perturbed by the intercalation of ligands. We model the B-to-A transition by the lateral translation of adjacent base pairs, and the intercalation of ligands by the vertical displacement of neighboring residues. We report a complete set of average configuration-dependent parameters, ranging from scalars (i.e., persistence lengths) to first- and second-order tensor parameters (i.e., average second moments of inertia), as well as approximations of the associated spatial distributions of the DNA and their angular correlations. The average structures of short chains (of lengths less than 100 base pairs) with local kinks or intrinsically curved sequences are essentially rigid rods. At the smallest chain lengths (10 base pairs), the kinked and curved chains exhibit similar average properties, although they are structurally perturbed compared to the standard B-DNA duplex. In contrast, at lengths of 200 base pairs, the curved and kinked chains are more compact on average and are located in a different space from the standard B- or A-DNA helix. While A-DNA is shorter and thicker than B-DNA in x-ray models, the long flexible A-DNA helix is thinner and more extended on average than its B-DNA counterpart because of more limited fluctuations in local structure. Curved polymers of 50 base pairs or longer also show significantly greater asymmetry than other DNAs (in terms of the distribution of base pairs with respect to the center of gravity of the chain). The intercalation of drugs in the curved DNA straightens and extends the smoothly deformed template. The dimensions of the average ellipsoidal boundaries defining the configurations of the intercalated polymers are roughly double those of the intrinsically curved chain. The altered proportions and orientations of these density functions reflect the changing shape and flexibility of the double helix. The calculations shed new light on the possible structural role of short A-DNA fragments in long B-type duplexes and also offer a model for understanding how GC-specific intercalative ligands can straighten naturally curved DNA. The mechanism is not immediately obvious from current models of DNA curvature, which attribute the bending of the chain to a perturbed structure in repeating tracts of A · T base pairs. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Given a specified DNA sequence and starting with an idealized conformation for the double helix (A-DNA or B-DNA), the dependence of conformational energy on variations in the local geometry of the double helix can be examined by computer modeling. By averaging over all thermally accessible states, it is possible to determine 1) how the optimum local structure differs from the initial idealized conformation and 2) the energetic costs of small structural deformations. This paper describes such a study. Tables are presented for the prediction of helix twist angles and base pair roll angles for both A-DNA and B-DNA when the sequence has been specified. Local deviations of helix parameters from their average values can accumulate to produce a net curvature of the molecule, a curvature that can be sharp enough to be experimentally detectable. As an independent check on the method, the calculations provide predictions for the longitudinal compressibility (Young's modulus) and the average torsional stiffness, both of which are in good agreement with experimental values. In examining the role of sequence-dependent variations in helix structure for the recognition of specific sequences by proteins, we have calculated the energy needed to deform the self-complementary hexanucleotide d(CAATTG) to match the local geometry of d(GAATTC), which is the sequence recognized by the EcoRI restriction endonuclease. That energy would be sufficient to reduce the binding of the incorrect sequence to the protein by over 2 orders of magnitude relative to the correct sequence.  相似文献   

13.
D Porschke 《Biopolymers》1989,28(8):1383-1396
The linear dichroism is calculated for DNA fragments in their thermal bending equilibrium. These calculations are given for relatively short fragments, where bent molecules can be described by an arc model. Using the measured value of 350 A for the persistence length, the limit dichroism (corresponding to complete alignment) decreases due to thermal bending, e.g., for a fragment with 100 base pairs to 80% of the value expected for straight molecules. Thermal bending should lead to a strong continuous decrease of the dichroism with increasing chain length, which is not observed, however, in electric dichroism experiments due to electric stretching. The influence of the electric field on the bending equilibrium is described by a contribution to the bending energy, which is calculated from the movement of charge equivalents against the potential gradient upon bending. The charge equivalents, which are assigned to the helix ends, are derived from the dipole moments causing the stationary degree of orientation. By this procedure the energy term inducing DNA stretching is given for induced, permanent, and saturating induced dipole models without introduction of any additional parameter. The stationary dichroism at a given electric field strength is then calculated according to an arc model by integration over all angles of orientation of helix axes or chords with respect to the field vector, and at each of these angles the contribution to the dichroism is calculated by integration over all helices with different degrees of bending. Orientation functions obtained by this procedure are fitted to dichroism data measured for various restriction fragments. Optimal fits are found for an induced dipole model with saturation of the polarizability. The difference between orientation functions with and without electric stretching is used to evaluate dichroism bending amplitudes. Both chain length and field strength dependence of bending amplitudes are consistent with experimental amplitudes derived from the dichroism decay in low salt buffers containing multivalent ions like Mg2+, spermine, or [CoNH3)6]3+. Bending amplitudes can be used to evaluate the persistence length from electrooptical data obtained for a single DNA restriction fragment. Bending and stretching effects are considerable already at relatively low chain length, and thus should not be neglected in any quantitative evaluation of experimental data.  相似文献   

14.
Finding the minimum energy amino acid side-chain conformation is a fundamental problem in both homology modeling and protein design. To address this issue, numerous computational algorithms have been proposed. However, there have been few quantitative comparisons between methods and there is very little general understanding of the types of problems that are appropriate for each algorithm. Here, we study four common search techniques: Monte Carlo (MC) and Monte Carlo plus quench (MCQ); genetic algorithms (GA); self-consistent mean field (SCMF); and dead-end elimination (DEE). Both SCMF and DEE are deterministic, and if DEE converges, it is guaranteed that its solution is the global minimum energy conformation (GMEC). This provides a means to compare the accuracy of SCMF and the stochastic methods. For the side-chain placement calculations, we find that DEE rapidly converges to the GMEC in all the test cases. The other algorithms converge on significantly incorrect solutions; the average fraction of incorrect rotamers for SCMF is 0.12, GA 0.09, and MCQ 0.05. For the protein design calculations, design positions are progressively added to the side-chain placement calculation until the time required for DEE diverges sharply. As the complexity of the problem increases, the accuracy of each method is determined so that the results can be extrapolated into the region where DEE is no longer tractable. We find that both SCMF and MCQ perform reasonably well on core calculations (fraction amino acids incorrect is SCMF 0.07, MCQ 0.04), but fail considerably on the boundary (SCMF 0.28, MCQ 0.32) and surface calculations (SCMF 0.37, MCQ 0.44).  相似文献   

15.
A simplified model of a polypeptide chain is described. Each residue is represented by a single interaction center. The energy of the chain and the force acting on each residue are given as a function of the residue coordinates. Terms to approximate the effect of solvent and the stabilization energy of helix formation are included. The model is used to study equilibrium and dynamical aspects of the helix–coil transition. The equilibrium properties examined include helix–coil equilibrium constants and their dependence on chain position. Dynamical properties are examined by a stochastic simulation of the Brownian motion of the chain in its solvent surroundings. Correlations in the motions of the residues are found to have an important influence on the helix–coil transition rates.  相似文献   

16.
By means of conformational energy calculations, we previously showed that the antigenic strength of a series of oligopeptides (derived from the carboxyl terminal sequence of cytochrome c) in a T-lymphocyte proliferation assay depends on their ability to adopt the α-helix conformation. Using experimentally determined statistical weights (within the framework of the Zimm–Bragg theory for the helix–coil transition), here we present a simple free energy analysis of the ability of these peptides to adopt the α-helix conformation in water. The experimental statistical weights have been modified to include the effect of long-range charge–dipole interactions on helix stability. We find that there is a close correlation between the tendency of a peptide to adopt the α-helix conformation and its ability to stimulate antigen-primed T cells. The shortest peptide with a tendency to adopt the α-helix conformation is also the shortest one that exhibits antigenic activity. The rapid and simple method presented here can thus be used to predict relative antigenicities for different peptides derived from cytochrome c.  相似文献   

17.
M Fixman 《Biopolymers》1975,14(2):277-297
The broadening of a helix–coil transition due to base pair heterogeneity is calculated on the basis of a cumulant perturbation expansion in the quasi-grand ensemble. In this ensemble the fictitious, homogeneous chain, to which the perturbation is referred, automatically decreases its correlation length as the heterogeneity increases. This “renormalization” seems to stabilize the perturbation expansion, in view of the good agreement between the present results and the exact theory of a heterogeneous polypeptide helix–coil transition. For the DNA model in which ring entropy is included, the transitions is found to be extremely narrow for an infinite random chain with conventional parameters. A tentative reconciliation of this result with contradictory calculations of some other workers is offered on the basis of end effects, coarse graining, or approximation to the ring entropy. An application of the new method to DNA with a non-random base pair distribution requires evaluation of the correlation function between molecular states (helix or coil), at different sites of the reference chain. The evaluation is reduced to quadrature, but numerical calculations have been made only for the random chain.  相似文献   

18.
Cation-pi interactions between an aromatic ring and a positive charge located above it have proven to be important in protein structures and biomolecule associations. Here, the role of these interactions at the interface of protein-DNA complexes is investigated, by means of ab initio quantum mechanics energy calculations and X-ray structure analyses. Ab initio energy calculations indicate that Na ions and DNA bases can form stable cation-pi complexes, whose binding strength strongly depends on the type of base, on the position of the Na ion, and whether the base is isolated or included in a double-stranded B-DNA. A survey of protein-DNA complex structures using appropriate geometrical criteria revealed cation-pi interactions in 71% of the complexes. More than half of the cation-pi pairs involve arginine residues, about one-third asparagine or glutamine residues that only carry a partial charge, and one-seventh lysine residues. The most frequently observed pair, which is also the most stable as monitored by ab initio energy calculations, is arginine- guanine. Arginine-adenine interactions are also favorable in general, although to a lesser extent, whereas those with thymine and cytosine are not. Our calculations show that the major contribution to cation-pi interactions with DNA bases is of electrostatic nature. These interactions often occur concomitantly with hydrogen bonds with adjacent bases; their strength is estimated to be from three to four times lower than that of hydrogen bonds. Finally, the role of cation-pi interactions in the stability and specificity of protein-DNA complexes is discussed.  相似文献   

19.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

20.
BACKGROUND: The traditional picture of charged amino acids in globular proteins is that they are almost exclusively on the outside exposed to the solvent. Buried charges, when they do occur, are assumed to play an essential role in catalysis and ligand binding, or in stabilizing structure as, for instance, helix caps. RESULTS: By analyzing the amount and distribution of buried charged surface and charges in proteins over a broad range of protein sizes, we show that buried charge is much more common than is generally believed. We also show that the amount of buried charge rises with protein size in a manner which differs from other types of surfaces, especially aromatic and polar uncharged surfaces. In large proteins such as hemocyanin, 35% of all charges are greater than 75% buried. Furthermore, at all sizes few charged groups are fully exposed. As an experimental test, we show that replacement of the buried D178 of muconate lactonizing enzyme by N stabilizes the enzyme by 4.2 degrees C without any change in crystallographic structure. In addition, free energy calculations of stability support the experimental results. CONCLUSIONS: Nature may use charge burial to reduce protein stability; not all buried charges are fully stabilized by a prearranged protein environment. Consistent with this view, thermophilic proteins often have less buried charge. Modifying the amount of buried charge at carefully chosen sites may thus provide a general route for changing the thermophilicity or psychrophilicity of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号