首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   

2.
Summary The solution structure of a specific DNA complex of the minimum DNA-binding domain of the mouse c-Myb protein was determined by distance geometry calculations using a set of 1732 nuclear Overhauser enhancement (NOE) distance restraints. In order to determine the complex structure independent of the initial guess, we have developed two different procedures for the docking calculation using simulated annealing in four-dimensional space (4D-SA). One is a multiple-step procedure, where the protein and the DNA were first constructed independently by 4D-SA using only the individual intramolecular NOE distance restraints. Here, the initial structure of the protein was a random coil and that of the DNA was a typical B-form duplex. Then, as the starting structure for the next docking procedure, the converged protein and DNA structures were placed in random molecular orientations, separated by 50 Å. The two molecules were docked by 4D-SA utilizing all the restraints, including the additional 66 intermolecular distance restraints. The second procedure comprised a single step, in which a random-coil protein and a typical B-form DNA duplex were first placed 70 Å from each other. Then, using all the intramolecular and intermolecular NOE distance restraints, the complex structure was constructed by 4D-SA. Both procedures yielded the converged complex structures with similar quality and structural divergence, but the multiple-step procedure has much better convergence power than the single-step procedure. A model study of the two procedures was performed to confirm the structural quality, depending upon the number of intermolecular distance restraints, using the X-ray structure of the engrailed homeodomain-DNA complex.Abbreviations rmsd root-mean-square deviation - NOE nuclear Overhauser enhancement - 4D-SA simulated annealing in four-dimensional space - Myb-R2R3 repeats 2 and 3 of the DNA-binding domain of the c-Myb protein - DNA 16 Myb-specific binding DNA duplex with 16 base pairs - IHDD-C residues 3 to 59 of the C-chain of the engrailed homeodomain-DNA complex - DNA11 DNA duplex with base pairs 9 to 19 of the engrailed homeodomain-DNA complex  相似文献   

3.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   

4.
Summary Time-averaged restraints in molecular dynamics simulations offer a means to account for the averaging that is implicit in NMR spectroscopic data. We present a systematic investigation of the parameters which characterise time-averaged distance restraints. Using previously published data for a small protein, chymotrypsin inhibitor 2, we identify conditions which can lead to undesirable heating or which grossly distort the dynamics of the system.Abbreviations NOE nuclear Overhauser effect - MD molecular dynamics - CI-2 chymotrypsin inhibitor 2  相似文献   

5.
The tertiary structure of the non-crystallizable two-electron-reduced Megasphaera elsdenii flavodoxin (15 kDa, 137 amino acid residues) has been determined using nuclear Overhauser enhancement restraints extracted from two-dimensional 1H-NMR spectra. A tertiary structure satisfying the experimental restraints very well (maximum NOE violation of 66 pm) was obtained with use of restrained molecular dynamics, using 509 distance restraints (including one non-NOE) on a starting structure modeled from the crystal structure of one-electron-reduced Clostridium MP flavodoxin. The protein consists of a central parallel beta-sheet surrounded on both sides by two alpha-helices. The flavin is positioned at the periphery of the molecule. The tertiary structure of the protein is highly defined with the exception of the flavin. The latter is expected to result from performing the restrained molecular dynamics simulation without water molecules and without proper charges on the flavin. The flavin, including the phosphate, the ribityl side chain and the isoalloxazine ring, is solvent accessible under the experimental conditions used and evidenced by a two-dimensional amide exchange experiment. This accessibility is expected to be important in the redox potential regulation of the semiquinone/hydroquinone couple of the protein. The amide exchange against deuterons and several typical line shapes in the two-dimensional NMR spectra are consistent with the structure generated. The structure is discussed in detail.  相似文献   

6.
Summary NMR data are collected as time- and ensemble-averaged quantities. Yet, in commonly used methods for structure determination of biomolecules, structures are required to satisfy simultaneously a large number of constrainsts. Recently, however, methods have been developed that allow a better fit of the experimental data by the use of time- or ensemble-averaged restraints. Thus far, these methods have been applied to structure refinement using distance and J-coupling restraints. In this paper, time and ensemble averaging is extended to the direct refinement with experimental NOE data. The implementation of time- and ensemble-averaged NOE restraints in DINOSAUR is described and illustrated with experimental NMR data for crambin, a 46-residue protein. Structure refinement with both time- and ensemble-averaged NOE restraints results in lower R-factors, indicating a better fit of the experimental NOE data.  相似文献   

7.
A low resolution solution structure of the cytokine interleukin-1 beta, a 153 residue protein of molecular weight 17,400, has been determined on the basis of 446 nuclear Overhauser effect (NOE) derived approximate interproton distance restraints involving solely NH, C alpha H and C beta H protons, supplemented by 90 distance restraints for 45 hydrogen bonds, and 79 phi torsion angle restraints. With the exception of 27 C alpha H-C alpha H NOEs, all the NOEs were assigned from a three-dimensional 1H-1H NOE 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum. The torsion angle restraints were obtained from accurate 3JHN alpha coupling constants measured from a HMQC-J spectrum, while the hydrogen bonds were derived from a qualitative analysis of the NOE, coupling constant and amide exchange data. A total of 20 simulated annealing (SA) structures was computed using the hybrid distance geometry-dynamical simulated annealing method. The solution structure of IL-1 beta comprises 12 beta-strands arranged in three pseudo-symmetrical topological units (each consisting of 5 anti-parallel beta-strands), joined by turns, short loops and long loops. The core of the structure, which is made up of the 12 beta-strands, together with the turns joining strands I and II, strands VIII and IX and strands X and XI, is well determined with a backbone atomic root-mean-square (r.m.s.) distribution about the mean co-ordinate positions of 1.2(+/- 0.1) A. The loop conformations, on the other hand, are poorly determined by the current data. A comparison of the core of the low resolution solution structure of IL-1 beta with that of the X-ray structure indicates that they are similar, with a backbone atomic r.m.s. difference of only 1.5 A between the co-ordinates of the restrained minimized mean of the SA structures and the X-ray structure.  相似文献   

8.
The local structure within an 8-A radius around residue 45 of a recombinant F45W variant of human ubiquitin has been determined using 67 interproton distance restraints measured by two-dimensional proton NMR. Proton chemical shift evidence indicates that structural perturbations due to the F45W mutation are minimal and limited to the immediate vicinity of the site of mutation. Simulated annealing implemented with stochastic boundary molecular dynamics was applied to refine the structure of Trp 45 and 10 neighboring residues. The stochastic boundary method allowed the entire protein to be reassembled from the refined coordinates and the outlying unrefined coordinates with little distortion at the boundary. Refinement began with four low-energy indole ring orientations of F45W-substituted wild-type (WT) ubiquitin crystal coordinates. Distance restraints were derived from mostly long-range NOE cross peaks with 51 restraints involving the Trp 45 indole ring. Tandem refinements of 64 structures were done using either (1) upper and lower bounds derived from qualitative inspection of NOE crosspeak intensities or (2) quantitative analysis of cross-peak heights using the program MARDIGRAS. Though similar to those based on qualitative restraint, structures obtained using quantitative NOE analysis were superior in terms of precision and accuracy as measured by back-calculated sixth-root R factors. The six-membered portion of the indole ring is nearly coincident with the phenyl ring of the WT and the indole NH is exposed to solvent. Accommodation of the larger ring is accompanied by small perturbations in the backbone and a 120 degrees rotation of the chi 2 dihedral angle of Leu 50.  相似文献   

9.
The structure and dynamics of the ionophoric antibiotic monensin in the presence of micelles have been determined. The conformation of monensin was derived from 50 nuclear Overhauser enhancement (NOE) derived distance restraints and metric-matrix based distance geometry calculations. The conformation was further refined with extensive NOE restrained molecular dynamics simulations carried out in a biphasic simulation cell. From the addition of doxylstearate and monitoring of the induced relaxation of the nmr signals, the relative topological orientation of the molecule within the micelle was ascertained. The results indicate two dihedral angles that act as hinge regions allowing the molecule to adopt a wide range of conformations. Considering the biological activity of monensin, i.e., the capture and transport of cations across cell membranes, an open and closed form of monensin have been postulated. The identification of these hinge regions, which are only observed in the membrane-like environment of the detergent micelles, provides insight into the mechanism of action and can serve as targets for modification to alter the biological profile of monensin.  相似文献   

10.
NMR paramagnetic relaxation enhancement (PRE) provides long‐range distance constraints (~15–25 Å) that can be critical to determining overall protein topology, especially where long‐range NOE information is unavailable such as in the case of larger proteins that require deuteration. However, several challenges currently limit the use of NMR PRE for α‐helical membrane proteins. One challenge is the nonspecific association of the nitroxide spin label to the protein‐detergent complex that can result in spurious PRE derived distance restraints. The effect of the nitroxide spin label contaminant is evaluated and quantified and a robust method for the removal of the contaminant is provided to advance the application of PRE restraints to membrane protein NMR structure determination.  相似文献   

11.
Summary A protocol for distance geometry calculation is shown to have excellent sampling properties in the determination of three-dimensional structures of proteins from nuclear magnetic resonance (NMR) data. This protocol uses a simulated annealing optimization employing mass-weighted molecular dynamics in four-dimensional space (Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78). It attains an extremely large radius of convergence, allowing a random coil conformation to be used as the initial estimate for the succeeding optimization process. Computations are performed with four systems of simulated distance data as tests of the protocol, using an unconstrained l-alanine 30mer and three different types of proteins, bovine pancreatic trypsin inhibitor, the -amylase inhibitor Tendamistat, and the N-terminal domain of the 434-repressor. The test of the unconstrained polypeptide confirms that the sampled conformational space is that of the statistical random coil. In the larger and more complicated systems of the three proteins, the protocol gives complete convergence of the optimization without any trace of initial structure dependence. As a result of an exhaustive conformational sampling by the protocol, the intrinsic nature of the structures generated with distance restraints derived from NMR data has been revealed. When the sampled structures are compared with the corresponding X-ray structures, we find that the averages of the sampled structures always show a certain pattern of discrepancy from the X-ray structure. This discrepancy is due to the short distance nature of the distance restraints, and correlates with the characteristic shape of the protein molecule.Abbreviations r.m.s.d. root-mean-square deviation - MD molecular dynamics - NMR nuclear magnetic resonance - NOE nuclear Overhauser enhancement - BPTI bovine pancreatic trypsin inhibitor  相似文献   

12.
Nuclear magnetic resonance (NMR) spectroscopy is a primary tool to perform structural studies of proteins in physiologically-relevant solution conditions. Restraints on distances between pairs of nuclei in the protein, derived from the nuclear Overhauser effect (NOE), provide information about the structure of the protein in its folded state. NMR studies of symmetric protein homo-oligomers present a unique challenge. Using X-filtered NOESY experiments, it is possible to determine whether an NOE restrains a pair of protons across different subunits or within a single subunit, but current experimental techniques are unable to determine in which subunits the restrained protons lie. Consequently, it is difficult to assign NOEs to particular pairs of subunits with certainty, thus hindering the structural analysis of the oligomeric state. Computational approaches are needed to address this subunit ambiguity, but traditional solutions often rely on stochastic search coupled with simulated annealing and simulations of simplified molecular dynamics, which have many tunable parameters that must be chosen carefully and can also fail to report structures consistent with the experimental restraints. In addition, these traditional approaches rarely provide guarantees on running time or solution quality. We reduce the structure determination of homo-oligomers with cyclic symmetry to computing geometric arrangements of unions of annuli in a plane. Our algorithm, disco, runs in expected O(n2) time, where n is the number of distance restraints, potentially assigned ambiguously. disco is guaranteed to report the exact set of oligomer structures consistent with the distance restraints and also with orientational restraints from residual dipolar couplings (RDCs). We demonstrate our method using two symmetric protein complexes: the trimeric E. coli diacylglycerol kinase (DAGK) and a dimeric mutant of the immunoglobulin-binding domain B1 of streptococcal protein G (GB1). In both cases, disco computes oligomer structures with high precision and also finds distance restraints that are either mutually inconsistent or inconsistent with the RDCs. The entire protocol DISCO has been completely automated in a software package that is freely available and open-source at www.cs.duke.edu/donaldlab/software.php.  相似文献   

13.
The determination by NMR of the solution structure of the phosphorylated enzyme IIB (P-IIB(Chb)) of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli is presented. Most of the backbone and side-chain resonances were assigned using a variety of mostly heteronuclear NMR experiments. The remaining resonances were assigned with the help of the structure calculations.NOE-derived distance restraints were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In addition, combinations of ambiguous restraints were used to resolve ambiguities in the NOE assignments. By combining sets of ambiguous and unambiguous restraints into new ambiguous restraints, an error function was constructed that was less sensitive to information loss caused by assignment uncertainties. The final set of structures had a pairwise rmsd of 0.59 A and 1.16 A for the heavy atoms of the backbone and side-chains, respectively.Comparing the P-IIB(Chb) solution structure with the previously determined NMR and X-ray structures of the wild-type and the Cys10Ser mutant shows that significant differences between the structures are limited to the active-site region. The phosphoryl group at the active-site cysteine residue is surrounded by a loop formed by residues 10 through 16. NOE and chemical shift data suggest that the phosphoryl group makes hydrogen bonds with the backbone amide protons of residues 12 and 15. The binding mode of the phosphoryl group is very similar to that of the protein tyrosine phosphatases. The differences observed are in accordance with the presumption that IIB(Chb) has to be more resistant to hydrolysis than the protein tyrosine phosphatases. We propose a proton relay network by which a transfer occurs between the cysteine SH proton and the solvent via the hydroxyl group of Thr16.  相似文献   

14.
PRIDE-NMR is a fast novel method to relate known protein folds to NMR distance restraints. It can be used to obtain a first guess about a structure being determined, as well as to estimate the completeness or verify the correctness of NOE data. AVAILABILITY: The PRIDE-NMR server is available at http://www.icgeb.org/pride  相似文献   

15.
Summary The structure of the ColE1 repressor of primer (rop) protein in solution was determined from the proton nuclear magnetic resonance data by a combined use of distance geometry and restrained molecular dynamics calculations. A set of structures was determined with low internal energy and virtually no violations of the experimental distance restraints. Rop forms homodimers: Two helical hairpins are arranged as an antiparallel four helix bundle with a left-handed rope-like twist of the helix axes and with left-handed bundle topology. The very compact packing of the side chains in the helix interfaces of the rop coiled-coil structure may well account for its high stability. Overall, the solution structure is highly similar to the recently determined X-ray structure (Banner, D.W., Kokkinidis, M. and Tsernoglou, D. (1987)J. Mol. Biol.,196, 657–675), although there are minor differences in regions where packing forces appear to influence the crystal structure.Abbreviations rop repressor of primer - NMR nuclear magnetic resonance - NOE nuclear Overhauser enhancement - NOESY NOE spectroscopy - RAN Set Structures generated from random choice of the dihedrai angles - HEL Set Structures generated from random choice of the dihedral angles restricted to ranges allowed for helices - MD molecular dynamics - EM energy minimization - RMSD root-mean-square deviation of atomic positions  相似文献   

16.
The solution conformation of the cardiac stimulatory sea anemone polypeptide anthopleurin-A has been characterised using distance geometry and restrained molecular dynamics calculations. A set of 253 approximate interproton distance restraints and 14 peptide backbone torsion angle restraints derived from two-dimensional 1H-NMR spectra at 500 MHz were used as input for these calculations. 13 structures generated by either metric matrix or variable target function distance geometry calculations were refined using energy minimisation and restrained molecular dynamics. The resulting structures contain a region of twisted antiparellel beta-sheet to which two separate regions of unordered chain are linked by three disulphide bonds. Two loops, one including Pro-41 and the other encompassing residues 10-18, are poorly defined by the NOE data.  相似文献   

17.
The assignment of the side-chain NMR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments. In order to obtain the three-dimensional structure, NOE data were collected from 15N-NOESY-HSQC, 13C-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 A on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.  相似文献   

18.
Michael Nilges 《Proteins》1993,17(3):297-309
The structure determination of symmetric dimers by NMR is impeded by the ambiguity of inter- and intramonomer NOE crosspeaks. In this paper, a calculation strategy is presented that allows the calculation of dimer structures without resolving ther ambuguity by additional experiments (like asymmetric labeling). The strategy employs a molecular dynamic-based simulated annealing approach to minimize a traget function. The experimental part of the target function contains distance restraints that correctly describe the ambiguity of the NOE peaks, and a novel term that restrains the symmetry of the dimer without requiring the knowledge of the symmetry axis. The use of the method is illustrated by three examples, using experimentally obtained data and model data derived from a known structure. For the purpose of testing the method, it is assumed that every NOE crosspeak is ambiguous in all three cases. It is shown that the structure of a homologous protein is known and in ab intio structure determination. The method can be extended to higher order symmetric multimers. © 1993 Wiley-Liss, Inc.  相似文献   

19.
We describe an efficient algorithm for protein backbone structure determination from solution Nuclear Magnetic Resonance (NMR) data. A key feature of our algorithm is that it finds the conformation and orientation of secondary structure elements as well as the global fold in polynomial time. This is the first polynomial-time algorithm for de novo high-resolution biomacromolecular structure determination using experimentally recorded data from either NMR spectroscopy or X-ray crystallography. Previous algorithmic formulations of this problem focused on using local distance restraints from NMR (e.g., nuclear Overhauser effect [NOE] restraints) to determine protein structure. This approach has been shown to be NP-hard, essentially due to the local nature of the constraints. In practice, approaches such as molecular dynamics and simulated annealing, which lack both combinatorial precision and guarantees on running time and solution quality, are used routinely for structure determination. We show that residual dipolar coupling (RDC) data, which gives global restraints on the orientation of internuclear bond vectors, can be used in conjunction with very sparse NOE data to obtain a polynomial-time algorithm for structure determination. Furthermore, an implementation of our algorithm has been applied to six different real biological NMR data sets recorded for three proteins. Our algorithm is combinatorially precise, polynomialtime, and uses much less NMR data to produce results that are as good or better than previous approaches in terms of accuracy of the computed structure as well as running time.  相似文献   

20.
We recorded several types of heteronuclear three-dimensional (3D) NMR spectra on 15N-enriched and 13C/15N-enriched histidine-containing phosphocarrier protein, HPr, to extend the backbone assignments [van Nuland, N. A. J., van Dijk, A. A., Dijkstra, K., van Hoesel, F. H. J., Scheek, R. M. & Robillard, G. T. (1992) Eur. J. Biochem, 203, 483-491] to the side-chain 1H,15N and 13C resonances. From both 3D heteronuclear 1H-NOE 1H-13C and 1H-NOE 1H-15N multiple-quantum coherence (3D-NOESY-HMQC) and two-dimensional (2D) homonuclear NOE spectra, more than 1200 NOE were identified and used in a step-wise structure refinement process using distance geometry and restrained molecular dynamics involving a number of new features. A cluster of nine structures, each satisfying the set of NOE restraints, resulted from this procedure. The average root-mean-square positional difference for the C alpha atoms is less than 0.12 nm. The secondary structure topology of the molecule is that of an open-face beta sandwich formed by four antiparallel beta strands packed against three alpha helices, resembling the recently published structure of Bacillus subtilis HPr, determined by X-ray crystallography [Herzberg, O., Reddy, P., Sutrina, S., Saier, M. H., Reizer, J. & Kapafia, G. (1992) Proc. Natl, Acad. Sci. USA 89, 2499-2503).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号