首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
十七种虫草的子实体培育研究   总被引:10,自引:1,他引:10  
在过去的12年间,分离得到20余种虫草无性型,对其中十七种虫草无性型进行了人工诱发虫草子座的试验,结果表明:蜂头虫草Cordycepssphecocephala、亚黄蜂虫草C.oxycephala、蚂蚁草C.myrmecophila、蛹虫草C.militaris、拟细虫草C.gracilioides和布氏虫草C.brongniatii等6种人工培养的虫草观察到了成熟的子囊壳并弹射了子囊孢子;古尼虫草小孢变种C.gunniivar.minor、球孢虫草C.bassiana、戴氏虫草C.taii、蚁虫草C.formicarum、蝽虫草C.nutans、长座虫草C.longissima、台湾虫草C.formosana和双梭孢虫草近似种C.bifusisporaaff.长出了许多的未成熟的子座或孢梗束;而冬虫夏草C.sinensis、沫蝉虫草C.tricentri和细虫草C.gracilis未能培育出子实体。其中蚁虫草和亚黄蜂虫草的人工成功培育子实体为首次报道。  相似文献   

2.
Phylogenetic relationships of 33 Candida species containing galactose in the cells were investigated by using 18S ribosomal DNA sequence analysis. Galactose-containing Candida species and galactose-containing species from nine ascomycetous genera were a heterogeneous assemblage. They were divided into three clusters (II, III, and IV) which were phylogenetically distant from cluster I, comprising 9 galactose-lacking Candida species, C. glabrata, C. holmii, C. krusei, C. tropicalis (the type species of Candida), C. albicans, C. viswanathii, C. maltosa, C. parapsilosis, C. guilliermondii, and C. lusitaniae, and 17 related ascomycetous yeasts. These three clusters were also phylogenetically distant from Schizosaccharomyces pombe, which contains galactomannan in its cell wall. Cluster II comprised C. magnoliae, C. vaccinii, C. apis, C. gropengiesseri, C. etchellsii, C. floricola, C. lactiscondensi, Wickerhamiella domercqiae, C. versatilis, C. azyma, C. vanderwaltii, C. pararugosa, C. sorbophila, C. spandovensis, C. galacta, C. ingens, C. incommunis, Yarrowia lipolytica, Galactomyces geotrichum, and Dipodascus albidus. Cluster III comprised C. tepae, C. antillancae and its synonym C. bondarzewiae, C. ancudensis, C. petrohuensis, C. santjacobensis, C. ciferrii (anamorph of Stephanoascus ciferrii), Arxula terrestris, C. castrensis, C. valdiviana, C. paludigena, C. blankii, C. salmanticensis, C. auringiensis, C. bertae, and its synonym C. bertae var. chiloensis, C. edax (anamorph of Stephanoascus smithiae), Arxula adeninivorans, and C. steatolytica (synonym of Zygoascus hellenicus). Cluster IV comprised C. cantarellii, C. vinaria, Dipodascopsis uninucleata, and Lipomyces lipofer. Two galactose-lacking and Q-8-forming species, C. stellata and Pichia pastoris, and 5 galactose-lacking and Q-9-forming species, C. apicola, C. bombi, C. bombicola, C. geochares, and C. insectalens, were included in Cluster II. Two galactose-lacking and Q-9-forming species, C. drimydis and C. chiropterorum, were included in Cluster III.  相似文献   

3.
魏铁铮  姚一建 《菌物研究》2009,7(1):52-58,62
对已报道的我国Crepidotus属种类进行了全面汇总,并概述了其分类研究现状。文献调查结果表明:国内已报道的该属种类名称共31个,包括30个种和1个变种,分布于全国26个省区。已报道的全部记录中,28个分类单元引证了标本,其余3个记录缺乏标本引证;7个记录的描述与国外权威描述存在差异,另有4个记录的报道未提供形态描述。淡紫靴耳不是Crepidotus属的成员,已被组合到其他属中。笔者接受"靴耳属"为Crepidotus属的汉语学名,并以此为属主名对属下的分类单元进行了全面修订。  相似文献   

4.
The eighth component of human C is essential for the formation of the membranolytic C attack complex. C8 has a unique structure in that two covalently linked chains, C8 alpha and C8 gamma, are associated non-covalently with the third chain, C8 beta. In order to study the structure and assembly of the C8 molecule, a panel of mAb has been produced against the C component C8. Eight of these mAb had reactivity to the C8 alpha-gamma subunit, whereas four reacted with C8 beta. One of the C8 alpha-gamma mAb, C8A2, had specificity for an epitope on the C8 alpha-chain and exhibited no cross-reactivity to any of the other terminal C components, including C8 beta. C8A2 inhibited the hemolytic activity of the C8 alpha-gamma subunit but had no effect on the activity of fluid phase whole C8 or C8 within membrane-bound C5b-8. Functional experiments suggest that C8A2 inhibits C8 alpha-gamma activity by interfering with its interaction with the C8 beta-chain. In an enzyme immunoassay using the C8A2 mAb, free C8 alpha-gamma subunit could be detected in both homozygous and heterozygous C8 beta-deficient serum. However, only low level binding was observed when homozygous C5- and C7-deficient sera were tested. Thus the mAb, C8A2, recognizes an epitope expressed on the C8 alpha-gamma subunit but not on intact C8 and can detect free C8 alpha-gamma in the presence of native C8.  相似文献   

5.
We have compared the C5-convertase-forming ability of different C4 allotypes, including the C4A6 allotype, which has low haemolytic activity and which has previously been shown to be defective in C5-convertase formation. Recent studies suggest that C4 plays two roles in the formation of the C5 convertase from the C3 convertase. Firstly, C4b acts as the binding site for C3 which, upon cleavage by C2, forms a covalent linkage with the C4b. Secondly, C4b with covalently attached C3b serves to form a high-affinity binding site for C5. Purified allotypes C4A3, C4B1 and C4A6 were used to compare these two activities of C4. Covalently linked C4b-C3b complexes were formed on sheep erythrocytes with similar efficiency by using C4A3 and C4B1, indicating that the two isotypes behave similarly as acceptors for covalent attachment of C3b. C4A6 showed normal efficiency in this function. However, cells bearing C4b-C3b complexes made from C4A6 contained only a small number of high-affinity binding sites for C5. Therefore a lack of binding of C5 to the C4b C3b complexes is the reason for the inefficient formation of C5 convertase by C4A6. The small number of high-affinity binding sites created, when C4A6 was used, were tested for inhibition by anti-C3 and anti-C4. Anti-C4 did not inhibit C5 binding, whereas anti-C3 did. This suggests that the sites created when C4A6 is used to make C3 convertase may be C3b-C3b dimers, and hence the low haemolytic activity of C4A6 results from the creation of low numbers of alternative-pathway C5-convertase sites.  相似文献   

6.
Human C4 haplotypes with duplicated C4A or C4B   总被引:6,自引:1,他引:5       下载免费PDF全文
In the course of study of families for the sixth chromosome markers HLA-A, C, B, D/DR, BF, and C2, the two loci for C4, C4A, and C4B, and glyoxalase I, we encountered five examples of probable duplication of one or the other of the two loci for C4. In one of these, both parents and one sib expressed two different structural genes for C4B, one sib expressed one, and one sib expressed none, suggesting that two C4B alleles were carried on a single haplotype: HLA-A2, B7, DR3, BFS1, C2C, C4A2, C4B1, C4B2, GLO1. In a second case, two siblings inherited C4B*1 and C4B*2 from one parent and C4B*Q0 from the other. This duplication appeared on the chromosome as HLA-AW33, B14, DR1, BFS, C2C, C4A2, C4B1, C4B2, GLO2. In a third, very large family with 3 generations, a duplication of the C4B locus occurred which was followed in 2 generations. In one individual, there were three C4B alleles and two C4A alleles. One of the C4B alleles had a hemolytically active product with electrophoretic mobility near C4B2 and was designated C4B*22. It segregated with C4B1 in the family studied. The complete haplotype was HLA-A11, CW1, BW56, DR5, BFS, C2C, C4A3, C4B22, C4B1, GLO2. In another family with 12 siblings, one parent and eight children expressed two C4A alleles on the haplotype HLA-AW30, BW38, DR1, BFF, C2C, C4A3, C4A2, C4BQ0, GLO1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
基于RAPD分析的中国苏铁属部分种类亲缘关系探讨   总被引:2,自引:0,他引:2  
农保选  黄玉源  刘驰 《广西植物》2011,31(2):167-174
利用21个筛选出来的RAPD引物,对苏铁属21个种的22份材料进行分析,获得333个RAPD标记,利用NTSYS(V.2.10e)软件,建立了22份供试材料的UPGMA聚类图,进而探讨了苏铁属21个种类间的亲缘关系。RAPD聚类分析结合形态学研究结果表明:多裂苏铁和叉孢苏铁的亲缘关系很近,聚为一类,多裂苏铁应为叉孢苏铁的一个亚种。西林苏铁、隆林苏铁、叉孢苏铁、尖尾苏铁、叉叶苏铁、长柄叉叶苏铁、多羽叉叶苏铁、长球果苏铁、贵州苏铁、四川苏铁、短叶苏铁、石山苏铁、宽叶苏铁、十万大山苏铁、元江苏铁、仙湖苏铁、海南苏铁、台湾苏铁、广东苏铁、滇南苏铁相互间的亲缘关系均较远,支持各自为独立的种。  相似文献   

8.
9.
Rimon A  Tzubery T  Galili L  Padan E 《Biochemistry》2002,41(50):14897-14905
The unique trypsin cleavable site of NhaA, the Na(+)/H(+) antiporter of Escherichia coli, was exploited to detect a change in mobility of cross-linked products of NhaA by polyacrylamide gel electrophoresis. Double-Cys replacements were introduced into loops, one on each side of the trypsin cleavage site (Lys 249). The proximity of paired Cys residues was assessed by disulfide cross-linking of the two tryptic fragments, using three homobifunctional cross-linking agents: 1,6-bis(maleimido)hexane (BMH), N,N'-o-phenylenedimaleimide (o-PDM), and N,N'-p-phenylenedimaleimide (p-PDM). The interloop cross-linking was found to be very specific, indicating that the loops are not merely random coils that interact randomly. In the periplasmic side of NhaA, two patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently between the double-Cys replacements A118C/S286C, N177C/S352C, and H225C/S352C; (b) only BMH cross-links the double-Cys replacements A118C/S352C, N177C/S286C, and H225C/S286C. In the cytoplasmic side of NhaA, three patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently the pairs of Cys replacements L4C/E252C, S146C/L316C, S146C/R383C, and E241C/E252C; (b) BMH and p-PDM cross-link efficiently the pairs of Cys replacements S87C/E252C, S87C/L316C, and S146C/E252C; (c) none of the reagents cross-links the double-Cys replacements L4C/L316C, L4C/R383C, S87C/R383C, A202C/E252C, A202C/L316C, A202C/R383C, E241C/L316C, and E241C/R383C. The data reveal that the N-terminus and loop VIII-IX that have previously been shown to change conformation with pH are in close proximity within the NhaA protein. The data also suggest close proximity between N-terminal and C-terminal helices at both the cytoplasmic and the periplasmic face of NhaA.  相似文献   

10.
11.
Abstract. Subgenus Otarrha is established in genus Chimarra to include eighteen described species formerly placed either in subgenus Chimarra or unplaced to subgenus, and thirteen new species. All species are Neotropical, with collective distributions primarily in the Antilles (Greater and Lesser) and northern South America. One species occurs in southeastern Brazil and another species in Costa Rica and Panama. New species are described, recognized species redescribed (except for C. diannae and C. koki ), and a key to the identification of males in the subgenus is provided. Additionally, characters supporting monophyly of the subgenus and a phylogeny of its species are proposed. Described species transferred to this subgenus include Chimarra cubanorum Botosaneanu, C . diakis Flint, C . diannae Flint & Sykora, C . dominicana Flint, C . garciai Botosaneanu, C . guapa Botosaneanu, C . jamaicensis Flint, C . koki Botosaneanu, C . machaerophora Flint, C . patosa Ross, C . puertoricensis Flint, C . quadrifurcata Botosaneanu, C . retrorsa Flint, C . rossi Bueno-Soria, C . sensillata Flint, C . septemlobata Flint, C . septifera Flint and C . spinulifera Flint. Chimarra patosa is designated the type species of the subgenus. New species described in Otarrha include Chimarra amazonia (Peru), C . barinas (Venezuela), C . darlingtoni (Cuba), C . diaphora (Venezuela), C . incipiens (Venezuela), C . odonta (Brazil), C . parene (Peru), C . parilis (Peru), C . particeps (Peru), C . peruana (Peru), C . phthanorossi (Colombia), C . redonda (Dominican Republic) and C . tachuela (Venezuela). Two additional species are described and left incertae sedis to subgenus, Chimarra usitatissima Flint and C . angularis , sp.n. (Venezuela, Guyana).  相似文献   

12.
Plumb ME  Sodetz JM 《Biochemistry》2000,39(42):13078-13083
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that interact to form the cytolytic membrane attack complex, or MAC. It is an oligomeric protein composed of three subunits (C8alpha, C8beta, C8gamma) that are products of different genes. In C8 from serum, these are arranged as a disulfide-linked C8alpha-gamma dimer that is noncovalently associated with C8beta. In this study, the site on C8alpha that mediates intracellular binding of C8gamma to form C8alpha-gamma was identified. From a comparative analysis of indels (insertions/deletions) in C8alpha and its structural homologues C8beta, C6, C7, and C9, it was determined that C8alpha contains a unique insertion (residues 159-175), which includes Cys(164) that forms the disulfide bond to C8gamma. Incorporation of this sequence into C8beta and coexpression of the resulting construct (iC8beta) with C8gamma produced iC8beta-gamma, an atypical disulfide-linked dimer. In related experiments, C8gamma was shown to bind noncovalently to mutant forms of C8alpha and iC8beta in which Cys(164)-->Gly(164) substitutions were made. In addition, C8gamma bound specifically to an immobilized synthetic peptide containing the mutant indel sequence. Together, these results indicate (a) intracellular binding of C8gamma to C8alpha is mediated principally by residues contained within the C8alpha indel, (b) binding is not strictly dependent on Cys(164), and (c) C8gamma must contain a complementary binding site for the C8alpha indel.  相似文献   

13.
采用RAPD技术对云南兰属的11个种和3个变种中的39个样本进行了相似性分析。在相似系数0.58水平上,大花亚属的虎头兰、西藏虎头兰、长叶兰和碧玉兰聚为一支;建兰亚属的寒兰、墨兰、蜜蜂兰、蕙兰、春兰、豆瓣兰、春剑、莲瓣兰和送春聚为另一支,兔耳兰与大花亚属关系更近。春剑和莲瓣兰相似性更高,它们与春兰的关系较远,不支持送春作为蕙兰下的变种。这些结果可为开展兰属育种提供重要参考价值。  相似文献   

14.
采用RAPD 技术对云南兰属的11 个种和3 个变种中的39 个样本进行了相似性分析。在相似系数0. 58 水平上, 大花亚属的虎头兰、西藏虎头兰、长叶兰和碧玉兰聚为一支; 建兰亚属的寒兰、墨兰、蜜蜂兰、蕙兰、春兰、豆瓣兰、春剑、莲瓣兰和送春聚为另一支, 兔耳兰与大花亚属关系更近。春剑和莲瓣兰相似性更高, 它们与春兰的关系较远, 不支持送春作为蕙兰下的变种。这些结果可为开展兰属育种提供重要参考价值。  相似文献   

15.
C1r was unable to cleave and activate proenzyme C1s unless first incubated at 37 degrees C in the absence of calcium before the addition of C1s. The acquisition of ability to activate C1s was associated with, and paralleled by, cleavage of each of the two noncovalently bonded 95,000 dalton chains of the molecule into disulfide linked subunits of 60,000 and 35,000 daltons, respectively. Thus, C1r is converted from an inactive form into an enzyme, C1r, able to cleave and activate C1s by proteolytic cleavage in marked analogy to the activation of several other complement enzymes. Trypsin was also found to cleave C1r but at a different site, and its action did not lead to C1r activation. C1r activation was inhibited by calcium, polyanethol sulfonate, C1 inactivator, and DFP but not by a battery of other protease inhibitors. C1 inactivator inhibited C1r by forming a complex with C1r via sites located on the light chain of the molecule. In other studies, cleavage of C1r was not accelerated by the addition of C1r ot C1s. C1r and C1r were found to have the same m.w., sedimentation coefficient, and diffusion coefficients. They differed, however, in charge with C1r migrating as a Beta-globulin and C1r as a gammaglobulin on electrophoresis in agarose. The amino acid composition of C1r and of each of the two polypeptide chains of Clr was determined. Both chains contained carbohydrate. Proteolytic cleavage of the C1r molecule was found to occur on addition of aggregated IgG to a mixture of C1q, C1r, and C1s in the presence of calcium. Neither C1q, C1s nor aggregated IgG alone, not C1r nor C1s induced C1r cleavage. Liquoid, an inhibitor of C1 activation, inhibited C1r cleavage. Thus, proteolytic cleavage of C1r appears to be a biologically meaningful event occurring during the activation of C1.  相似文献   

16.
The cleavage of human complement component C5 to fragment C5b by the alternative pathway C5 convertase was studied. The alternative-pathway C5 convertase on zymosan can be represented by the empirical formula zymosan--C3b2BbP. Both properdin-stabilized C3 and C5 convertase activities decay with a half life of 34 min correlating with the loss of the Bb subunit. The C5 convertase functions in a stepwise fashion: first, C5 binds to C3b and this is followed by cleavage of C5 to C5b. The capacity to bind C3b is a stable feature of component C5, as C5b also has this binding capacity. Component C5, unlike component C3, does not form covalent bonds with zymosan after activation, and C5 is not inhibited by amines. Therefore C5, although similar in structure to C3, does not appear to contain the internal thioester group reported for C3 and C4.  相似文献   

17.
Nonimmune activation of the first component of complement (C1) by cardiolipin (CL) vesicles present specific features which were not demonstrated on immune complexes. CL vesicles which activate C1 in the presence of C1-inhibitor (C1-INH) were found to bind C1s in the absence of C1r, and to induce a specific C1r-independent cleavage of C1q-bound C1s. Therefore, several known natural nonimmune activators were analyzed by comparing their ability to activate C1 in the presence of C1-INH and to mediate a C1r-independent cleavage of C1s. Freshly isolated human heart mitochondria (HHM) activated C1 only in the absence of C1-INH. However, mitoplasts derived from HHM (HHMP) activated C1 regardless of the presence of C1-INH, and induced a specific cleavage of C1q-bound C1s. The same pattern was observed in the case of smooth E. coli and a semi-rough E. coli strain. DNA, known to activate C1 only in the absence of C1-INH, does not induce C1s cleavage in the absence of C1r. Thus, nonimmune activators can be classified into two distinct categories. "Strong" activators, such as CL vesicles, HHMP, or the semi-rough E. coli strain J5 can activate C1 in the presence of C1-INH. By using C1qs2 as a probe, they exhibit a specific, C1r-independent cleavage of C1s. C1s-binding to C1q is a critical factor for the activation process in this group. In the case of "weak" activators, such as E. coli smooth strains, DNA, or HHM, no C1s-binding to activator-bound C1q was detected, and C1r-independent C1s cleavage and C1 activation in the presence of C1-INH were not observed. As in the case of immune complexes, C1r activation appears to play a key role in the C1 activation by "weak" activators.  相似文献   

18.
Immune complex-induced C1 activation and fluid phase C1 autoactivation have been compared in order to elucidate the immune complex role in the C1 activation process. Kinetic analyses revealed that immune complex-bound C1 activates seven times faster than fluid phase C1 spontaneously activates. The rate of spontaneous C1 activation increased after decreasing the solution ionic strength. In fact at one-half physiologic ionic strength (i.e., 0.08 M), the kinetics of spontaneous C1 activation were indistinguishable from the kinetics of activation of immune complex-bound C1 at physiologic ionic strength. The enhanced fluid phase C1 activation at low ionic strength resulted neither from C1 nor C1q aggregation, nor from selective effects on the C1r2S2 subunit; however, at the reduced ionic strength, the C1 association constant (defined for C1q + C1r2S2 in equilibrium C1qr2S2) did increase to 2.3 X 10(8) M-1, which is equal to that for C1 bound to an immune complex at physiologic ionic strength. Therefore, C1 can spontaneously activate in the fluid phase as rapidly as C1 on an immune complex when the strength of interaction between C1q and C1r2S2 is the same in both systems. In conclusion, under physiologic conditions, C1q and C1r2S2 are two weakly interacting proteins. Immune complexes provide a site for the assembly of a stable C1 complex, in which C1q and C1r2S2 remain associated long enough for C1q to activate C1r2S2. Thus, immune complexes enhance the intrinsic C1 autoactivation process by strengthening the association of C1q with C1r2S2.  相似文献   

19.
C3/C5 convertase is a serine protease that cleaves C3 and C5. In the present study we examined the C5 cleaving properties of classical pathway C3/C5 convertase either bound to the surface of sheep erythrocytes or in its free soluble form. Kinetic parameters revealed that the soluble form of the enzyme (C4b,C2a) cleaved C5 at a catalytic rate similar to that of the surface-bound form (EAC1,C4b,C2a). However, both forms of the enzyme exhibited a poor affinity for the substrate, C5, as indicated by a high Km (6-9 microM). Increasing the density of C4b on the cell surface from 8,000 to 172,000 C4b/cell did not influence the Km. Very high affinity C5 convertases were generated only when the low affinity C3/C5 convertases (EAC1,C4b,C2a) were allowed to deposit C3b by cleaving native C3. These C3b-containing C3/C5 convertases exhibited Km (0.0051 microM) well below the normal concentration of C5 in blood (0.37 microM). The data suggest that C3/C5 convertase assembled with either monomeric C4b or C4b-C4b complexes are inefficient in capturing C5 but cleave C3 opsonizing the cell surface with C3b for phagocytosis. Deposition of C3b converts the enzymes to high affinity C5 convertases, which cleave C5 in blood at catalytic rates approaching Vmax, thereby switching from C3 to C5 cleavage. Comparison of the kinetic parameters with those of the alternative pathway convertase indicates that the 6-9-fold greater catalytic rate of the classical pathway C5 convertase may compensate for the fewer numbers of C5 convertase sites generated upon activation of this pathway.  相似文献   

20.
The influence of terminal complement components on the generation and release of the complement C5a fragment was investigated by comparing the levels of C5a in complement-activated serum with the levels of C5a produced in serum depleted of complement C6. In order to investigate the release of C5a, a modified C5a assay was developed that utilizes an anti-C5b monoclonal antibody to remove C5, C5b, and C5b-C5a complexes from samples prior to C5a assay. The modified assay was developed because the standard methodology, which includes an acid-precipitation step designed to dissociate C5a and C5b, cannot distinguish free C5a from the C5a that is bound to C5b. Therefore, the standard methodology is not capable of monitoring the influence of terminal components on C5a/C5b dissociation. Levels of C5a were measured in complement-activated whole human serum, in serum depleted of C6, and in serum containing inhibitory levels of anti-C6 Fab using both the modified C5a assay and the standard methodology. Sera were complement-activated with either zymosan to activate the alternative complement pathway or with antibody-coated sheep erythrocytes to activate the classical pathway. The levels of free C5a in C6-depleted sera after activation were equivalent to the C5a levels in activated whole serum, indicating that C6 is not required for the release of C5a from C5b. In addition, the quantity of C5a detected in zymosan-activated sera using the standard acid-precipitation methodology was greater than C5a levels when assayed using the modified immunoadsorption technique, confirming that acid-treatment enhances the C5a dissociation and promotes C5a recovery. Since the other terminal components, C7, C8, and C9, bind to C5b only after C5b only after C6 is bound, these results indicate that none of the terminal components are required for the release of C5a. Although the terminal components could influence the rate of C5a release, the quantity of C5a released in serum was entirely independent of terminal components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号