首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum (ER) stress protein mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to protect cells from stress-induced cell death before and after its secretion; however, the conditions under which it is secreted are not known. Accordingly, we examined the mechanism of MANF release from cultured ventricular myocytes and HeLa cells, both of which secrete proteins via the constitutive pathway. Although the secretion of proteins via the constitutive pathway is not known to increase upon changes in intracellular calcium, MANF secretion was increased within 30 min of treating cells with compounds that deplete sarcoplasmic reticulum (SR)/ER calcium. In contrast, secretion of atrial natriuretic factor from ventricular myocytes was not increased by SR/ER calcium depletion, suggesting that not all secreted proteins exhibit the same characteristics as MANF. We postulated that SR/ER calcium depletion triggered MANF secretion by decreasing its retention. Consistent with this were co-immunoprecipitation and live cell, zero distance, photo affinity cross-linking, demonstrating that, in part, MANF was retained in the SR/ER via its calcium-dependent interaction with the SR/ER-resident protein, GRP78 (glucose-regulated protein 78 kDa). This unusual mechanism of regulating secretion from the constitutive secretory pathway provides a potentially missing link in the mechanism by which extracellular MANF protects cells from stresses that deplete SR/ER calcium. Consistent with this was our finding that administration of recombinant MANF to mice decreased tissue damage in an in vivo model of myocardial infarction, a condition during which ER calcium is known to be dysregulated, and MANF expression is induced.  相似文献   

2.
György Csordás  György Hajnóczky 《BBA》2009,1787(11):1352-217
Mitochondria form junctions with the sarco/endoplasmic reticulum (SR/ER), which support signal transduction and biosynthetic pathways and affect organellar distribution. Recently, these junctions have received attention because of their pivotal role in mediating calcium signal propagation to the mitochondria, which is important for both ATP production and mitochondrial cell death. Many of the SR/ER-mitochondrial calcium transporters and signaling proteins are sensitive to redox regulation and are directly exposed to the reactive oxygen species (ROS) produced in the mitochondria and SR/ER. Although ROS has been emerging as a novel signaling entity, the redox signaling of the SR/ER-mitochondrial interface is yet to be elucidated. We describe here possible mechanisms of the mutual interaction between local Ca2+ and ROS signaling in the control of SR/ER-mitochondrial function.  相似文献   

3.
Many proteins retained within the endo/sarcoplasmic reticulum (ER/SR) lumen express the COOH-terminal tetrapeptide KDEL, by which they continuously recycle from the Golgi complex; however, others do not express the KDEL retrieval signal. Among the latter is calsequestrin (CSQ), the major Ca2+-binding protein condensed within both the terminal cisternae of striated muscle SR and the ER vacuolar domains of some neurons and smooth muscles. To reveal the mechanisms of condensation and establish whether it also accounts for ER/SR retention of CSQ, we generated a variety of constructs: chimeras with another similar protein, calreticulin (CRT); mutants truncated of COOH- or NH2-terminal domains; and other mutants deleted or point mutated at strategic sites. By transfection in L6 myoblasts and HeLa cells we show here that CSQ condensation in ER-derived vacuoles requires two amino acid sequences, one at the NH2 terminus, the other near the COOH terminus. Experiments with a green fluorescent protein GFP/CSQ chimera demonstrate that the CSQ-rich vacuoles are long-lived organelles, unaffected by Ca2+ depletion, whose almost complete lack of movement may depend on a direct interaction with the ER. CSQ retention within the ER can be dissociated from condensation, the first identified process by which ER luminal proteins assume a heterogeneous distribution. A model is proposed to explain this new process, that might also be valid for other luminal proteins.  相似文献   

4.
Rat liver endoplasmic reticulum (ER) membranes were investigated for the presence of proteins having structural relationships with sarcoplasmic reticulum (SR) proteins. Western immunoblots of ER proteins probed with polyclonal antibodies raised against the 100-kDa SR Ca-ATPase of rabbit skeletal muscle identified a single reactive protein of 100 kDa. Also, the antibody inhibited up to 50% the Ca-ATPase activity of isolated ER membranes. Antisera raised against the major intraluminal calcium binding protein of rabbit skeletal muscle SR, calsequestrin (CS), cross-reacted with an ER peptide of about 63 kDa, by the blotting technique. Stains-All treatment of slab gels showed that the cross-reactive peptide stained metachromatically blue, similarly to SR CS. Two-dimensional electrophoresis (Michalak, M., Campbell, K. P., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 1317-1326) of ER proteins showed that the CS-like component of liver ER, similarly to skeletal CS, fell off the diagonal line, as expected from the characteristic pH dependence of the rate of mobility of mammalian CS. In addition, the CS-like component of liver ER was released from the vesicles by alkaline treatment and was found to be able to bind calcium, by a 45Ca overlay technique. From these findings, we conclude that a 100-kDa membrane protein of liver ER is the Ca-ATPase, and that the peripheral protein in the 63-kDa range is closely structurally and functionally related to skeletal CS.  相似文献   

5.
This review summarizes recent information on the role of calcium in the process of neuronal injury with special attention to the role of calcium stores in the endoplasmic reticulum (ER). Experimental results present evidence that ER is the site of complex processes such as calcium storage, synthesis and folding of proteins and cell response to stress. ER function is impaired in many acute and chronic diseases of the brain which in turn induce calcium store depletion and conserved stress responses. Understanding the mechanisms leading to ER dysfunction may lead to recognition of neuronal protection strategies.  相似文献   

6.
7.
The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signaling that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.  相似文献   

8.
Perturbation of cellular calcium induces secretion of luminal ER proteins   总被引:26,自引:0,他引:26  
C Booth  G L Koch 《Cell》1989,59(4):729-737
The endoplasmic reticulum (ER) contains a family of luminal proteins (reticuloplasmins) that are normally excluded from the secretory pathway. However, reticuloplasmins are efficiently secreted when murine fibroblasts are treated with calcium ionophores. The secreted and cellular forms of endoplasmin are clearly distinguishable on the basis of gel mobility and endoglycosidase H sensitivity. Reticuloplasmin secretion leads to the depletion of the proteins from the ER and their accumulation in the Golgi apparatus. The stress response to calcium ionophore induces reaccumulation of reticuloplasmins in the ER and suppresses their secretion. Secretion is also associated with changes in the structure and distribution of the ER. These observations show that perturbation of cellular calcium levels leads to the breakdown of the mechanism for ER retention of reticuloplasmins and suggest a role for calcium ions in their sorting from secretory proteins.  相似文献   

9.
Intracellular calcium transient alternans (CTA) has a recognized role in arrhythmogenesis, but its origin is not yet fully understood. Recent models of CTA are based on a steep relationship between calcium release from the sarcoplasmic reticulum (SR) and its calcium load before release. This mechanism alone, however, does not explain recent observations of CTA without diastolic SR calcium content alternations. In addition, nanoscopic imaging of calcium dynamics has revealed that the elementary calcium release units of the SR can become refractory independently of their local calcium content. Here we show using a new physiologically detailed mathematical model of calcium cycling that luminal gating of the calcium release channels (RyRs) mediated by the luminal buffer calsequestrin (CSQN) can cause CTA independently of the steepness of the release-load relationship. In this complementary mechanism, CTA is caused by a beat-to-beat alternation in the number of refractory RyR channels and can occur with or without diastolic SR calcium content alternans depending on pacing conditions and uptake dynamics. The model has unique features, in that it treats a realistic number of spatially distributed and diffusively coupled dyads, each one with a realistic number of RyR channels, and that luminal CSQN buffering and gating is incorporated based on experimental data that characterizes the effect of the conformational state of CSQN on its buffering properties. In addition to reproducing observed features of CTA, this multiscale model is able to describe recent experiments in which CSQN expression levels were genetically altered as well as to reproduce nanoscopic measurements of spark restitution properties. The ability to link microscopic properties of the calcium release units to whole cell behavior makes this model a powerful tool to investigate the arrhythmogenic role of abnormal calcium handling in many pathological settings.  相似文献   

10.
Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins   总被引:3,自引:0,他引:3  
The sarcoplasmic reticulum (SR) controls the level of intracellular Ca2+ in cardiac and skeletal muscle by storing and releasing Ca2+. A set of intralumenal SR Ca(2+)-binding proteins has been identified that may serve important roles in SR Ca2+ storage and mobilization. The most prominent of these SR proteins, calsequestrin, is discretely localized to junctional SR. Other intralumenal proteins are more widely distributed throughout the SR. All of these intralumenal SR Ca(2+)-binding proteins are acidic, stain blue with dye Stains-All, and appear to be substrates for casein kinase II. The biochemistry and cell biology of lumenal SR proteins may conform to a paradigm now emerging from the study of endoplasmic reticulum proteins.  相似文献   

11.
Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ as a buffer and RyR luminal sensor using a mechanistic model of RyR-CSQ interaction. By using various asymptotic approximations and mean first exit time calculation, we derive a minimal model of a calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We show that because of its buffering capability, increasing CSQ increases the spark duration and size. However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and increases the critical SR level for calcium release termination. Finally, we show that with increased bulk cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.  相似文献   

12.
The endoplasmic reticulum (ER) is involved in many critical processes, including protein and lipid synthesis and calcium storage. Morphologically, the ER can be divided into two subdomains: a network of interconnected tubules and interspersed sheets. Until recently, how these different compartments form in a continuous membrane system was unclear. Several classes of integral membrane proteins have been identified in the ER; the reticulons and DP1/Yop1p play roles in the generation of ER tubules, and possibly in stabilizing ER sheets, atlastins and Sey1p are dynamin-like GTPases that facilitate tubular network formation by mediating ER membrane fusion, and Climp63, p180, and kinectin are enriched in ER sheets and influence their formation. In this review, we summarize recent advances in our understanding of how these proteins participate in ER shaping. We also discuss possible mechanisms for regulating ER morphology via the cytoskeleton. Lessons learned about sculpting the ER membrane may be applicable to other organelles.  相似文献   

13.
Hukmani P  Tripathy BC 《Plant physiology》1994,105(4):1295-1300
The inhibitor sensitivity of the endoplasmic reticulum (ER) and plasma membrane (PM) calcium pumps of red beet (Beta vulgaris L.) were studied by measuring the ATP-driven accumulation of 45Ca2+ into isolated membrane vesicles. Both transporters were strongly inhibited by 50 [mu]mol m-3 erythrosin B, but only by 50% in the presence of 100 mmol m-3 vanadate. A number of inhibitors considered to be specific for the sarcoplasmic reticulum (SR)/ER-type calcium pump in animal cells were used to further characterize the PM and ER Ca2+-ATPases in red beet and were compared with their effect on the transport and hydrolytic activities of the PM and tonoplast H+-ATPases. The hydroquinones 2,5-di(tert-butyl)-1,4-benzohydroquinone and 2,5-di(tert-amyl)-1,4-benzohydroquinone produced around 20 and 40% inhibition of activity, respectively, of the PM and ER calcium pumps and the PM H+-ATPase when present at concentrations of 30 mmol m-3. In contrast, the vacuolar proton pump displayed a much higher sensitivity to these two compounds. Nonylphenol appeared to have a general inhibitory effect on all four membrane transport proteins and gave almost complete inhibition when present at a concentration of 100 mmol m-3. Thapsigargin and the structurally related compound trilobolide produced 50% inhibition of both the ER and PM calcium pumps at concentrations of 12.5 and 24 mmol m-3, respectively. The PM and tonoplast proton pumps were also sensitive to these compounds. The ER and PM calcium pumps were almost completely insensitive to cyclopiazonic acid (CPA) up to a concentration of 20 mmol m-3. When present at 100 mmol m-3 CPA caused 30% inhibition of the transport properties of all four ATPases. The high concentrations of all of the inhibitors of the SR/ER Ca-ATPase required to inhibit the red beet ER calcium pump, together with the similar effects on the PM calcium pump and the PM and tonoplast proton pumps, suggests that these hydrophobic compounds have a general nonselective action in red beet, possibly through disruption of membrane lipid-protein interactions.  相似文献   

14.
Members of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) family are transmembrane proteins that are essential for the function of intracellular Ca(2+) storage organelles. We found that overexpression of avian muscle SERCA1a in transfected mouse fibroblasts led to the appearance of tubular membrane bundles that we termed plaques. These structures were generated in transfected cells when SERCA1a protein expression approached the endogenous level measured in chicken skeletal muscle. Plaque membranes had associated ribosomes and contained endoplasmic reticulum (ER) proteins. Endogenous ER protein levels were not elevated in SERCA1a-expressing cells, indicating that plaques were not generalized proliferations of ER but rather a reorganization of existing organelle membrane. Plaque formation also was observed in cells expressing a green fluorescent protein-SERCA1a fusion protein (GFP-SERCA1a). GFP-SERCA1a molecules displayed extensive lateral mobility between plaques, suggesting the presence of membrane continuities between these structures. Plaques were induced in cells expressing cDNA encoding a catalytically silent SERCA1a mutant indicating that ER redistribution was driven by a structural feature of the enzyme. SERCA1a-induced plaque formation shares some characteristics of sarcoplasmic reticulum (SR) biogenesis during muscle differentiation, and high-level SERCA1a expression in vivo may contribute to the formation of SR from ER during embryonic myogenesis.  相似文献   

15.
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48.  相似文献   

16.
Endoplasmic reticulum (ER) stress-induced apoptosis may arise from multiple environmental and pharmacological causes, but the precise mechanism(s) involved are not completely known. Members of Bcl-2 protein family are important regulators of apoptosis. In this study, we report that in a process dependent on the proapoptotic Bcl-2 members Bax and Bak, exogenously expressed fluorescent protein localized to the ER lumen is released into the cytosol in cells undergoing ER stress. Upon ER stress induction, endogenous ER luminal proteins are also released into the cytosol in a similar manner accompanied by translocation and anchorage of Bax to the ER membrane. In addition, Bax and truncated-Bid (tBid) mediate a global increase in ER membrane permeability to ER luminal proteins in vitro. Importantly, antiapoptotic Bcl-XL antagonizes the effects of proapoptotic Bcl-2 proteins on ER membrane permeability. Consistent with Bax translocation to the ER membrane in whole apoptotic cells, there is also increased tight association of Bax with the ER membrane correlated with the increase in ER membrane permeability in vitro. Overall, these data suggest that the regulation of ER membrane permeability by Bcl-2 proteins could be an important molecular mechanism of ER stress-induced apoptosis.  相似文献   

17.
Hexose-6-phosphate dehydrogenase (H6PD) is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver H6PD is required for the 11-oxoreductase activity of 11beta-hydroxysteroid dehydrogenase type 1, which converts inactive 11-oxo-glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in type II (fast) fibers, which have increased glycogen content. Here, we show that H6PD null mice develop a severe skeletal myopathy characterized by switching of type II to type I (slow) fibers. Running wheel activity and electrically stimulated force generation in isolated skeletal muscle are both markedly reduced. Affected muscles have normal sarcomeric structure at the electron microscopy level but contain large intrafibrillar membranous vacuoles and abnormal triads indicative of defects in structure and function of the sarcoplasmic reticulum (SR). SR proteins involved in calcium metabolism, including the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), calreticulin, and calsequestrin, show dysregulated expression. Microarray analysis and real-time PCR demonstrate overexpression of genes encoding proteins in the unfolded protein response pathway. We propose that the absence of H6PD induces a progressive myopathy by altering the SR redox state, thereby impairing protein folding and activating the unfolded protein response pathway. These studies thus define a novel metabolic pathway that links ER stress to skeletal muscle integrity and function.  相似文献   

18.
The fast-twitch skeletal muscle Ca(2+)-ATPase isoenzyme, SERCA1a, is localized in chick skeletal myotubes to both the sarcoplasmic reticulum (SR) and to the nuclear envelope, an extension of the endoplasmic reticulum (ER). The ER labeling remained after cycloheximide treatment, indicating that it did not represent newly synthesized SERCA1a in transit to the SR. Expression of the cDNA encoding SERCA1a in cultured non-muscle cells led to the localization of the enzyme in the ER, as indicated by organelle morphology and the co-localization of SERCA1a with the endogenous ER luminal protein, BiP. Immunopurification analysis showed that SERCA1a was not bound to BiP, nor was any degradation apparent. Thus, the SR Ca(2+)-ATPase appears to contain ER targeting information.  相似文献   

19.
Signal recognition particle (SRP) and SRP receptor are known to be essential components of the cellular machinery that targets nascent secretory proteins to the endoplasmic reticulum (ER) membrane. Here we report that the SRP receptor contains, in addition to the previously identified and sequenced 69-kD polypeptide (alpha-subunit, SR alpha), a 30-kD beta-subunit (SR beta). When SRP receptor was purified by SRP-Sepharose affinity chromatography, we observed the co-purification of two other ER membrane proteins. Both proteins are approximately 30 kD in size and are immunologically distinct from each other, as well as from SR alpha and SRP proteins. One of the 30-kD proteins (SR beta) forms a tight complex with SR alpha in detergent solution that is stable to high salt and can be immunoprecipitated with antibodies to either SR alpha or SR beta. Both subunits are present in the ER membrane in equimolar amounts and co-fractionate in constant stoichiometry when rough and smooth liver microsomes are separated on sucrose gradients. We therefore conclude that SR beta is an integral component of SRP receptor. The presence of SR beta was previously masked by proteolytic breakdown products of SR alpha observed by others and by the presence of another 30-kD ER membrane protein (mp30) which co-purifies with SR alpha. Mp30 binds to SRP-Sepharose directly and is present in the ER membrane in several-fold molar excess of SR alpha and SR beta. The affinity of mp30 for SRP suggests that it may serve a yet unknown function in protein translocation.  相似文献   

20.
A recent communication reported that the rate of calcium uptake by sarcoplasmic reticulum (SR) isolated from rat skeletal muscle could be increased by the isolation of the SR in 15 mM taurine, and that exposure of the SR to taurine throughout the isolation procedure resulted in an increased yield of SR. Because of these results in rat skeletal muscle SR studies were carried out on dog myocardial SR.Sarcoplasmic reticulum isolated from adult dog cardiac muscle was not affected by taurine in concentrations as high as 15 millimolar. The addition of taurine to isolation media did not affect calcium transport, ATPase, binding, or release. Sarcoplasmic reticulum fragments were stored and re-examined over a period of a week without appreciable difference in stability of activity between those isolated in the presence of taurine and the control group. This lack of effect suggests that the role of taurine in cardiac muscle metabolism is not likely to be found in regulation of the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号