首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and specific liquid chromatography-tandem mass spectrometry assay was developed to quantify the first selective aldosterone blocker Eplerenone (I) and its hydrolyzed metabolite (II) in human plasma. The analytes (I, II) and their stable isotope-labeled analogues as internal standards were extracted on a C(18) solid-phase extraction cartridge using a Zymark RapidTrace automation system. The chromatographic separation was carried out on a narrow-bore reversed-phase Zorbax XDB-C(8) HPLC column with a mobile phase of acetonitrile/water (40:60, v/v) containing 10 mM ammonium acetate (pH 7.4). The analytes were ionized using negative-to-positive switch electrospray mass spectrometry, then detected by multiple reaction monitoring with a tandem mass spectrometer. The precursor to product ion transitions of m/z 415-->163 and m/z 431-->337 was used to measure I and II, respectively. The assay exhibited a linear dynamic range of 10-2500 ng/ml of plasma for both I and II. The lower limit of quantification was 10 ng/ml for I and II. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A throughput of 80 human plasma standards and samples per run was achieved with run time of 5 min for each injection. The assay has been successfully used in analyses of human plasma samples to support clinical studies.  相似文献   

2.
A simple, sensitive and specific HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the simultaneous quantification of tiloronoxim and its major active metabolite, tilorone, in human urine. The analytes, together with metoprolol, which was employed as an internal standard (IS), were extracted with a mixture solvent of chloroform/ethyl ether (1/2, v/v). The chromatographic separation was performed on a narrow-bore reversed phase HPLC column with a gradient mobile phase of methanol/water containing 15 mM ammonium bicarbonate (pH 10.5). The API 3,000 mass spectrometer was equipped with a TurboIonSpray interface and was operated on positive-ion, multiple reaction-monitoring (MRM) mode. The mass transitions monitored were m/z 426.3-->100.0, m/z 411.3-->100.0 and m/z 268.3-->116.1 for tiloronoxim, tilorone and the IS, respectively. The assay exhibited a linear dynamic range of 1-100 ng/ml for both tiloronoxim and tilorone based on the analysis of 0.2 ml aliquots of urine. The lower limit of quantification was 1 ng/ml for both compounds. Acceptable precision and accuracies were obtained for concentrations over the standard curve ranges. Run time of 8 min for each injection made it possible to analyze a high throughput of urine samples. The assay has been successfully used to analyze human urine samples from healthy volunteers.  相似文献   

3.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with electrospray ionization (ESI) was developed and validated for the simultaneous determination of pitavastatin and its lactone in human plasma and urine. Following a liquid-liquid extraction, both the analytes and internal standard racemic i-prolact were separated on a BDS Hypersil C(8) column, using methanol-0.2% acetic acid in water (70: 30, v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 422.4-->m/z 290.3 for pitavastatin, m/z 404.3-->m/z 290.3 for pitavastatin lactone and m/z 406.3-->m/z 318.3 for the internal standard, respectively. Linear calibration curves of pitavastatin and its lactone were obtained in the concentration range of 1-200 ng/ml, with a lower limit of quantitation of 1 ng/ml. The intra- and inter-day precision values were less than 4.2%, and accuracies were between -8.1 and 3.5% for both analytes. The proposed method was utilized to support clinical pharmacokinetic studies of pitavastatin in healthy subjects following oral administration.  相似文献   

4.
A sensitive and selective high-performance liquid chromatographic method for the simultaneous determination of a new angiotensin II receptor blocking agent, losartan (DuP 753, MK-954, I), and its active metabolite, EXP3174 (II), in human plasma or urine is described. The two analytes and internal standard are extracted from plasma and urine at pH 2.5 by liquid—liquid extraction and analyzed on a cyano column with ultraviolet detection at 254 nm. The mobile phase is composed of acetonitrile and phosphate buffer at pH 2.5. The limit of quantification for both compounds in plasma is 5 ng/ml. The limit in urine is 20 and 10 ng/ml for I and II, respectively. The assay described has been successfully applied to samples from pharmacokinetic studies.  相似文献   

5.
Two stability challenges were encountered during development of an urine assay for a proliferator-activated receptor (PPAR) agonist, I (2-{[5,7-dipropyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}-2-methyl propionic acid), indicated for the treatment of Type II diabetes. First, the analyte was lost in urine samples due to adsorption on container surface which is a common problem during clinical sample handling. Secondly, the acylglucuronide metabolite (III), a major metabolite of I, displayed limited stability and effected the quantitation of parent drug due to the release of I through hydrolysis. Therefore, a clinical collection procedure was carefully established to stabilize I and its acylglucuronide metabolite, III, in human urine. The metabolite was not quantitated with this method. The urine samples are treated with bovine serum albumin (BSA) equal to 1.75% of the urine volume and formic acid equal to 1% of urine volume. Compound (I) and internal standard (II) were extracted from urine with 1 mL ethyl acetate using a fully automated liquid-liquid extraction in 96-well plate format. The analytes are separated by reverse phase high-performance liquid chromatography (HPLC) with tandem mass spectrometry in multiple-reaction-monitoring (MRM) mode used for detection. The urine method has a lower limit of quantitation (LLOQ) of 0.05 ng/mL with a linearity range of 0.05-20 ng/mL using 0.05 mL of urine. The method was validated and used to assay urine clinical samples.  相似文献   

6.
Column-switching HPLC methods have been developed and validated for the determination of a new antihypertensive prodrug, TCV-116 (I), and its metabolites, CV-11974 (II) and CV-15959 (III), in human serum and urine. Initial sample cleanup was achieved by extracting the analytes into an organic solvent. After chromatographing on an ODS column with a mobile phase consisting of acetonitrile and an acidic phosphate buffer, the zone of the analyte's retention was heart-cut onto a second ODS column with a mobile phase of acetonitrile and a phosphate buffer at a higher pH. Complete separation of the analytes and the endogenous peaks was accomplished by the two-dimensional chromatography. Good precision and linearity of the calibration standards, as well as the inter-day and intra-day precision and accuracy of quality control samples, were achieved. The limit of quantitation (LOQ), using 0.5 ml of serum, was 2 ng/ml for I, 0.8 ng/ml for II, and 0.5 ng/ml for III. The LOQ for urine sample was 10 ng/ml for II and III. Stability of the analytes during storage, extraction, and chromatography processes was established. The results illustrate the versatile application of column switching to method development of multiple analytes in various biological matrices. The methods have been successfully used for the analyses of I and its metabolites in thousands of clinical samples to provide pharmacokinetics data.  相似文献   

7.
Analytical method for the simultaneous determination of dextromethorphan (1) and dextrorphan (2) in urine, based on solid-phase extraction of drug from acidified hydrolyzed biological matrix, were developed. The analytes (1 and 2) and the internal standard (levallorphan, 3, IS) were detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) in positive ionization mode using a heated nebulizer (HN) probe and monitoring their precursor-->product ion combinations of m/z 272-->215, 258-->201, and 284-->201 for 1, 2, and 3, respectively, in multiple reaction monitoring mode. The analytes and IS were chromatographed on a Keystone Prism reverse phase (50 mm x 2.0 mm) 5 microm column using a mobile phases consisting of a 35/65 or 27/73 mixtures of methanol/water containing 0.1% TFA adjusted to pH 3 with ammonium hydroxide pumped at 0.4 ml/min for 1 and 2, respectively. The limits of reliable quantification of 1 and 2 were 2 and 250 ng/ml, respectively, when 1 ml of urine was processed. The absence of matrix effect was demonstrated by analysis of neat standards and standards spiked into urine extracts originating from five different sources. The linear ranges of the assay were 2-200 and 250-20,000 ng/ml for 1 and 2, respectively. Assay selectivity was evaluated by monitoring the "cross-talk" effects from other metabolites into the MS/MS channels used for monitoring 1, 2, and 3. In addition, an interfering peak originating from an unknown metabolite of 1 into the quantification of dextromethorphan was detected, requiring an effective chromatographic separation of analytes from other metabolites of 1. The need for careful assessment of selectivity of the HPLC-MS/MS assay in the presence of metabolites, and the assessment of matrix effect, are emphasized.  相似文献   

8.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method has been developed and validated for simultaneous quantification of venlafaxine (VEN) and O-desmethyl venlafaxine (ODV) in human plasma. The analytes were extracted from human plasma by using solid-phase extraction (SPE) technique. Escitalopram (ESC) was used as the internal standard. A Betasil C18 column provided chromatographic separation of analytes followed by detection with mass spectrometry. The mass transition ion-pair has been followed as m/z 278.27-->121.11 for VEN, m/z 264.28-->107.10 for ODV and m/z 325.00-->262.00 for ESC. The method involves a solid phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection at nanogram levels. The proposed method has been validated with linear range of 3-300 ng/ml for VEN and 6-600 ng/ml for ODV. The intrarun and interrun precision and accuracy values are within 10%. The overall recoveries for VEN and ODV were 95.9 and 81.7%, respectively. Total elution time as low as 3 min only.  相似文献   

9.
A method for the simultaneous determination of a cyclooxygenase-2 inhibitor, 4-(4-methanesulfonylphenyl)-3-phenyl-5H-furan-2-one (rofecoxib, I) and [13C7]rofecoxib, (II), in human plasma has been developed to support the clinical oral bioavailability (BA) study of I. The method is based on high-performance liquid chromatography (HPLC) with atmospheric pressure chemical ionization tandem mass spectrometric (APCI-MS-MS) detection in the negative ionization mode using a heated nebulizer interface. Two different stable isotope labeled analogs of I were initially evaluated for their use as intravenous (i.v.) markers in the BA study. [13CD3]Rofecoxib was shown to be isotopically unstable in plasma and water containing solvent and an efficient deuterium exchange prevented its use in the study. On the other hand, the isotopic integrity of the subsequently synthesized [13C7]rofecoxib (II) was maintained, as expected, in plasma and other solvent systems. The results of these experiments clearly demonstrated the need for the careful evaluation of the isotopic integrity of the stable isotope labeled compound for the successful utilization of these compounds in BA studies and also as internal standards in the quantitative analysis of drugs in biological fluids. After liquid-liquid extraction of I, II, and internal standard (III) from plasma, the analytes were chromatographed on a narrow bore (100 mm x 3.0 mm) C18 analytical column, with mobile phase consisting of acetonitrile-water (1:1, v/v) at a flow-rate of 0.5 ml/min. The MS-MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer operated in the selected reaction monitoring mode. The precursor-->product ion combinations of m/z 313-->257, 320-->292, and 327-->271 were used to quantify I, II, and III, respectively. The assay was validated in the concentration range of 0.1 to 100 ng/ml of plasma for both I and II. The precision of the assay (expressed as relative standard deviation) was less than 10% at all concentrations within the standard curve range, with adequate assay accuracy. The assay was utilized to support the clinical BA study in which oral doses of I were administered together with an i.v. dose of II to determine the oral BA of rofecoxib at 12.5- and 25-mg doses.  相似文献   

10.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

11.
Methods based on high-performance liquid chromatography (HPLC) with atmospheric-pressure chemical ionization (APCI) mass spectrometric (MS) detection using either single (MS) or triple (MS/MS) quadrupole mass spectrometric detection for the determination of (2R)-[1(R)-(3,5-bis-trifluoromethylphenyl)ethoxy]-3(S)-(4-fluoro-phenyl)morpholin-4-ylmethyl]-5-oxo-4,5-dihydro-[1,2,4]triazol)methyl morpholine (Aprepitant, Fig. 1) in human plasma has been developed. Aprepitant (I) and internal standard (II, Fig. 1) were isolated from the plasma matrix buffered to pH 9.8 using a liquid-liquid extraction with methyl-t-butyl ether (MTBE). The analytes were separated on a Keystone Scientific's Javelin BDS C-8 2 mm x 4.6 mm 3 microm guard column coupled to BDS C-8 50 mm x 4.6 mm 3 microm analytical column, utilizing a mobile phase of 50% acetonitrile and 50% water containing 0.1% formic acid and 10 mM ammonium acetate delivered at a flow rate of 1 ml/min. The single quadrupole instrument was operated in a single ion monitoring (SIM) mode analyzing the protonated molecules of Aprepitant and II at m/z 535 and 503, respectively. The triple quadrupole mass spectrometer was operated in multiple reaction monitoring mode (MRM) monitoring the precursor --> ion combinations of m/z 535 --> 277 and 503 --> 259 for Aprepitant and II, respectively. The linear calibration range for both single and triple quadrupole detectors was from 10 to 5000 ng/ml of plasma with coefficients of variation less than 8% at all concentrations. Both single and triple quadrupole instruments yielded similar precision and accuracy results. Matrix effect experiments performed on both instruments demonstrated the absence of any significant change in ionization of the analytes when comparing neat standards to analytes in the presence of plasma matrix. Both instruments were used successfully to support numerous clinical trials of Aprepitant.  相似文献   

12.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

13.
A rapid, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS-MS) method has been developed and validated for the simultaneous analysis of hydrocodone (HYC) and its metabolite hydromorphone (HYM) in human plasma. A robotic liquid handler and a 96-channel liquid handling workstation were used to aliquot samples, to add internal standard (I.S.), and to extract analytes of interest. A 96-well mixed-mode solid-phase cartridge plate was used to extract the analytes and I.S. The chromatographic separation was on a silica column (50 x 3 mm, 5-microm) with a mobile phase consisting of acetonitrile, water and trifluoroacetic acid (TFA) (92:8:0.01, v/v). The run time for each injection was 2.5 min with the retention times of approximately 2.1 and 2.2 min for HYC and HYM, respectively. The tandem mass spectrometric detection was by monitoring singly charged precursor-->product ion transition 300-->199 (m/z) for HYC, and 28-->185 (m/z) for HYM. The validated calibration curve range was 0.100-100 ng/ml, based on a plasma volume of 0.3 ml. The correlation coefficients were greater than or equal to 0.9996 for both HYC and HYM. The low limit of quantitation (LLOQ) was 0.100 ng/ml for both HYC and HYM with signal-to-noise ratio (S/N) of 50 and 10. respectively. The deuterated analytes, used as internal standards, were monitored at mass transitions 303-->199 (m/z) for HYC-d3 and 289-->185 (m/z) for HYM-d3. The inter-day (n= 17) precision of the quality control (QC) samples were < or = 3.5% RSD (relative standard deviation) for HYC and < or = 4.7% RSD for HYM, respectively. The inter-day accuracy of the QC samples were < or = 2.1% RE (relative error) for HYC and < or = 1.8% RE for HYM. The intra-day (n=6) precision and accuracy of the QC samples were < or = 2.6% RSD and < or = 3.0% RE for HYC, and < or = 4.7% RSD and < or = 2.4% RE for HYM. There was no significant deviation from the nominal values after a 5-fold dilution of high concentration QC samples by blank matrix. The QC samples were stable when kept at room temperature for 24-h or experienced three freeze-thaw cycles. The extraction recoveries were 86% for HYC and 78% for HYM. No detectable carryover was observed when a blank sample was injected immediately after a 2500 ng/ml sample that was 25-fold more concentrated than the upper limit of quantitation (ULOQ).  相似文献   

14.
We have determined three opioidmimetics (compounds I-III) in the rat brain dialysates after intraperitoneal (i.p.) administration of compounds I-III using a liquid chromatography/mass spectrometry with tandem mass spectrometry (LC-MS/MS). The dialysate samples with methanol were directly analyzed by online column-switching liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 421 of m/z 657 for compound I, m/z 421 of m/z 643 for compound II, and m/z 407 of m/z 629 for compound III) on LC-MS/MS with electrospray ionization (ESI), opioidmimetics in rat brain dialysates were determined. Calibration curves of the method showed a good linearity in the range of 10-100 ng/ml for each compound. The limit of determination was estimated to be ca. 1 ng/ml for compounds II and III, and ca. 5 ng/ml for compound I, respectively. The precision of analysis showed coefficients of variation ranging from 4.7 to 10.4% at compound III concentration (10-100 ng/ml) in Ringer's solution. As a result, the procedure proved to be very suitable for routine analysis. The method was applied to the analysis of three opioidmimetics in the brain dialysate samples from rats treated with these compounds.  相似文献   

15.
A simple, rapid, novel and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of tacrolimus (I) in human plasma, a narrow therapeutic index, potent macrolide immunosuppressive drug. The analyte and internal standard (tamsulosin (II)) were extracted by liquid-liquid extraction with t-butylmethylether using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on reverse phase Xterra ODS column with a mobile phase of 99% methanol and 1% 10mM ammonium acetate buffer. The deprotonate of analyte was quantitated in negative ionization by multiple reaction monitoring (MRM) with a mass spectrometer. The mass transitions m/z 802.5-->560.3 and m/z 407.2-->151.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.05-25ng/ml for tacrolimus in human plasma. The lower limit of quantitation was 50pg/ml with a relative standard deviation of less than 20%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Run time of 2min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in comparative bioavailability studies. The tacrolimus plasma concentration profile could be obtained for pharmacokinetic study. The observed maximum plasma concentration (C(max)) of tacrolimus (5mg oral dose) is 440pg/ml, time to observed maximum plasma concentration (T(max)) is 2.5h and elimination half-life (T(1/2)) is 21h.  相似文献   

16.
A liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantification of major chlorpyrifos (CP) metabolites, i.e. diethyl thiophosphate (DETP), diethyl phosphate (DEP), and 3,5,6-trichloro-2-pyridinol (TCP), in human urine was developed. Simultaneous separation of the parent compound and its primary biotransformation products was achieved within 20 min in gradient elution mode employing a mixed-mode reversed-phase/weak anion exchange (RP/WAX) separation principle. The analytical method was developed for a toxicokinetic study of an acute poisoning incidence with a CP containing pesticide formulation. An initial mass spectrometric screening performed with unprocessed urine samples revealed that CP is not excreted unchanged by the kidney. Hence, the quantitative assay was validated for DETP (quantifier transition: m/z 169-->95, qualifier transition: m/z 169-->141), DEP (m/z 153-->79, 153-->125), and TCP (m/z 196-->35, 198-->35) taking dibutyl phosphate (DBP) (m/z 209-->79, 209-->153) as internal standard. Clean-up of urine samples prior to LC-ESI-MS/MS analysis was carried out by a liquid-liquid extraction step with a mixture of ethylacetate and acetonitrile (70:30; v/v). Linearity was observed between 0.25 and 75 mgL(-1), and the signal-to-noise ratio at 0.25 mgL(-1) was better than six for the individual analytes. Recoveries, precision, and accuracies were all adequate across the validated range of 1-75 mgL(-1) for the present toxicological case study.  相似文献   

17.
A sensitive and selective LC-MS-MS method has been developed and validated for the determination of cryptotanshinone (CTS) and its active metabolite tanshinone II A (TS II A) in rat plasma using fenofibrate (FOFB) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a Waters symmetry ODS column using methanol and water (85:15) as mobile phase delivered at 1.0 mL/min. LC-MS-MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using atmospheric pressure chemical ionization (APCI) and positive multiple reaction monitoring. Ions monitored were m/z 297.0--> 251.0 for CTS, m/z 295.0--> 249.0 for TS II A, and m/z 361.1--> 233.0 for FOFB with argon at a pressure of 0.2 Pa and collision energy of 25 eV for collision-induced dissociation (CID). The assay was linear over the range 0.1-20 ng/mL for CTS and 0.2-15 ng/mL for TS II A. The average recoveries of CTS and TS II A from rat plasma were 93.7 and 94.7%, respectively. The established method has been applied in a pharmacokinetic study of CTS in rats.  相似文献   

18.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry (LC-MS-MS) method is described for the determination of duloxetine in human plasma. Duloxetine was extracted from plasma using methanol and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 5mM ammonium acetate (45:55, v/v, pH 3.5) was delivered at a flow rate of 0.3 ml/min. Atmospheric pressure ionization (API) source was operated in positive ion mode. Multiple reaction monitoring (MRM) mode using the transitions of m/z 298.1-->m/z 44.0 and m/z 376.2-->m/z 123.2 were used to quantify duloxetine and internal standard (I.S.), respectively. The linearity was obtained over the concentration range of 0.1-50.0 ng/ml and the lower limit of quantitation (LLOQ) was 0.1 ng/ml. This method was successfully applied to pharmacokinetic study of a duloxetine formulation product after oral administration to healthy human subjects.  相似文献   

19.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

20.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry method is described for the simultaneous determination of nebivolol and valsartan in human plasma. Nebivolol and valsartan were extracted from plasma using acetonitrile and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 0.05 mM formic acid (50:50 v/v, pH 3.5) was delivered at a flow rate of 0.25 ml/min. Atmospheric pressure ionization (API) source was operated in both positive and negative ion mode for nebivolol and valsartan, respectively. Selected reaction monitoring mode (SRM) using the transitions of m/z 406.1-->m/z 150.9; m/z 434.2-->m/z 179.0 and m/z 409.4-->m/z 228.1 were used to quantify nebivolol, valsartan and internal standard (IS), respectively. The linearity was obtained over the concentration range of 0.01-50.0 ng/ml and 1.0-2000.0 ng/ml and the lower limits of quantitation were 0.01 ng/ml and 1.0 ng/ml for nebivolol and valsartan, respectively. This method was successfully applied to the pharmacokinetic study of fixed dose combination (FDC) of nebivolol and valsartan formulation product after an oral administration to healthy human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号