首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein denaturation resulting from temperatures between 42.0 degrees C and 50 degrees C has been observed and implicated as the lethal lesion for hyperthermic cell killing. A logical corollary is that protection against hyperthermic killing requires stabilization of cellular proteins against thermal denaturation. To test this, Chinese hamster ovary cells were treated with the heat protector cycloheximide and then subjected to differential scanning calorimetry to measure protein denaturation. Cycloheximide stabilized proteins that denatured between 42 degrees C and 52 degrees C in control cells by increasing their transition (denaturation) temperature by an average of 1.3 degrees C. In addition, cycloheximide reduced the cytotoxicity of actinomycin D and adriamycin, suggesting that protein stabilization protects cells against stresses other than hyperthermia.  相似文献   

2.
Acid extrusion responses to prostaglandin E2 were investigated in Chinese hamster ovary (CHO) cells heterologously expressing human EP1, EP2, and EP3I receptors (hEP1, hEP2 and hEP3I) by using a microphysiometer that detected small pH changes in the extracellular microenvironment. In the cells expressing hEP1, which is known to increase intracellular Ca2+, prostaglandin E2 (1 and 10 nM) slowly accelerated acid extrusion, but at higher concentrations an initial transient phase (approximately 5 times greater than the basal acidification) overlapped the slowly developing phase. In contrast, the cells expressing hEP2, which evokes cAMP production, showed dual responses to prostaglandin E2: an initial reduction followed by an acceleration of acid extrusion. In the cells expressing hEP3I, which is known to produce both a decrease in cAMP and a modest increase in intracellular Ca2+, acid extrusion was gradually accelerated by prostaglandin E2 and reached a plateau at around 2 min. Elimination of extracellular Ca2+ diminished the responses to prostaglandin E2 in hEP1 cells, but had little effect on the responses in hEP2 and hEP3I cells. Forskolin mimicked the dual effects of prostaglandin E2 observed in the hEP2 cells. Pretreatment with pertussis toxin inhibited the response to prostaglandin E2 in hEP3I cells, but the responses in hEP1 and hEP2 cells were not affected. Na+/H+ exchanger (NHE) inhibitors (EIPA and HOE642) suppressed all the responses induced by prostaglandin E2 in hEP1, hEP2, and hEP3I cells. These results suggest that EP receptor subtypes regulate acid extrusion mainly via NHE-1 through distinct signal transduction pathways in CHO cells.  相似文献   

3.
4.
Abstract. Stationary-phase Chinese hamster ovary cells were cultured in medium containing ferritin (-19% iron by weight) added at concentrations ranging from 0 to 128 μ g/ml. One set of cultures was unirradiated, and another set was exposed to 4.0 Gy of X-ray. Clonogenic cell survival was assessed in each set of cultures. In the absence of added ferritin, 4.0 Gy killed approximately 50% of the cells. In the absence of radiation, ferritin was not toxic at less than 48 μ g/ml; above 48 μ g/ml, toxicity increased with concentration. Apoferritin was not toxic at any concentration tested (up to 1000 μ g/ml). Although 32 μg/ ml ferritin, reflecting only a 3–6 fold increase in iron concentration over normal serum, was not toxic, it reduced the survival of X-irradiated cells by an additional 75%. These results indicate that a sublethal concentration of ferritin can be a potent radiosensitizer. This suggests the possibility that high body iron stores may increase susceptibility to radiation injury in humans.  相似文献   

5.
Chinese hamster ovary cells were heated at 45.5 or 43.0 degrees C at acidic pH (6.7) or normal physiological pH (7.4) to have a survival of 10(-3). The weak acid, 5,5-dimethyl-2,4-oxazolidinedione-2-14C), was used to measure the intracellular pH (pHi) both during and following hyperthermia. Tritiated water and a Particle Data machine were used to measure cellular volume as well. With 99.9% of the cell population destined to die clonogenically, the physiologically alive cells, as determined by the exclusion of trypan blue dye, maintained their pH differential between pHe and pHi as well as unheated cells. Furthermore, the cell's ability to regulate its pHi in response to changes in pHe was not affected by the same hyperthermic treatment. However, cellular volume decreased by 15-30% by 5 h after the onset of heat treatment. We conclude that heat does not perturb the cellular regulation of intracellular H+ concentration. Therefore, there is no thermal damage to the pHi-regulatory mechanism that could be responsible for either heat-induced reproductive cell death or low pH sensitization of heat killing.  相似文献   

6.
The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Protein candidates for the attachment of DNA within eukaryotic cell nuclei were identified by isolating nuclear matrix proteins and determining which of those proteins co-sedimented with DNA within a 5.7 M CsCl gradient. The presence of attached nucleic acid was detected after the proteins were subjected to the denaturing conditions of isoelectric focusing/sodium dodecyl sulfate two-dimensional polyacrylamide gel electrophoresis. The attached nucleic acid was detected with silver staining, ethidium bromide, and Amido Black binding. The nucleic acid was identified as DNA based on its ability to be labeled in vitro by terminal deoxynucleotidyltransferase and DNA polymerase I (Klenow). Three proteins were identified as containing attached DNA, one of which was vimentin. The proteins had apparent Mr and pI values of 70,000, 4.3; 70,000, 5.3; and 57,000, 4.8, respectively. We propose that these proteins are within a class of nuclear proteins containing firmly attached DNA and have referred to them as DNA attachment proteins.  相似文献   

8.
The production of plasminogen activator activity in an auxotrophic mutant of the Chinese hamster ovary cell line was found be greatly stimulated by low concentrations of dimethyl sulfoxide. The production of both cell-associated and excreted plasminogen activator activities was stimulated maximally by dimethyl sulfoxide at a concentration of 2.5%. The stimulation of plasminogen activator activity production was found to be completely inhibited by actinomycin D and cycloheximide but not by mitomycin C, implying that new protein and RNA syntheses were required for this process. Using specific antibodies against plasminogen activator, the presence of a tissue-type plasminogen activator could only be detected in dimethyl sulfoxide treated cells. The dimethyl sulfoxide induced plasminogen activator production was observed only in a mutant auxotrophic for adenosine, glycine, and thymidine but not in wild-type cells. The ability of dimethyl sulfoxide to induce the synthesis of plasminogen activator was lost when the cells were hybridized with another complementary auxotrophic mutant. This implies that the ability of dimethyl sulfoxide to stimulate the production of plasminogen activator may be related to the auxotrophic mutation in this cell.  相似文献   

9.
Sodium butyrate (NaBu) is known to enhance the rate of biosynthesis of recombinant proteins in Chinese hamster ovary cells (CHO). Here we demonstrate that supplementation with NaBu during rapid growth brings about abrupt death of the cells. The death of the cells is due to apoptosis, as assessed by intranucleosomal DNA fragmentation. The promotion of apoptotic death of the cells could be partially blocked by treatment with the well-known antioxidant, N-acetylcysteine (NAC). Strikingly, the NAC treatment enhanced the production of recombinant EPO two-fold compared with that of the culture without NAC supplementation. These results showed that NaBu treatment supplemented with NAC not only inhibits apoptosis, but also exerts a synergistic effect on the biosynthesis of recombinant EPO.  相似文献   

10.
Mammalian cells were shown to fuse after direct electric pulsation of the plated cells in culture. The extent of fusion was controlled by the duration of the post-pulse incubation. Formation of polynucleated cells was slow, even at 37 degrees C. Pre-pulse incubation with colchicine increased the fusion yield slightly. Cytoskeletal organization during the post-pulse incubation was observed using immunofluorescence techniques. Microfilaments were unaffected, but microtubules disappeared during the first minutes following the pulse, and then reformed on subsequent incubation.  相似文献   

11.
Membrane-bound NTPDase2 is a member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family involved in the regulation of P2 receptor signaling. NTPDase2 has broad substrate specificity for extracellular nucleotides, but hydrolyses nucleoside 5'-triphosphates with high preference over nucleoside 5'-diphosphates. In this study, we have sought to determine how enzyme substrates acting on P2 receptors affect intracellular NTPDase2 trafficking. To achieve this, Chinese hamster ovary (CHO) cells were transiently transfected with rat-specific NTPDase2 cDNA tagged with green fluorescent protein (GFP), to allow direct visualisation of subcellular localisation and trafficking of NTPDase2. Cells were superfused with NTPDase2 substrates (ATP and UTP) and synthetic nucleotide analogues (ATPgammaS and ADPbetaS), and confocal image stacks were acquired at regular time intervals. NTPDase2 incorporation into the plasma membrane was determined by comparative analysis of fluorescence intensity in the cytosolic and membrane compartments. GFP-tagged NTPDase2 was fully functional and ATP and ATPgammaS induced membrane incorporation of GFP-NTPDase2 from putative intracellular stores, whilst UTP and ADPbetaS were ineffective. The increased ATP hydrolysis rate correlated with increased NTPDase2 trafficking to the plasma membrane. ATP-induced NTPDase2 trafficking was mediated by activation of endogenous P2X receptors involving Ca2+ entry rather than by P2Y receptor-induced release of Ca2+ from intracellular stores. Our results suggest that P2X receptor activation stimulates insertion of latent NTPDase2 into the plasma membrane. The increase in surface-located NTPDase2 may reflect a regulatory mechanism counteracting excessive stimulation and desensitisation of P2 receptors.  相似文献   

12.
The presence of aggregated forms of proteins can be problematic for therapeutics due to the potential for immunogenic and pharmacokinetic issues. Although downstream processing can remove the aggregated forms, inhibiting aggregate formation upstream during the cell culture stage could reduce the burden on downstream processing and potentially improve process yields. This study first examined the effects of environmental factors (temperature, pH, and dissolved oxygen) and medium components (bivalent copper ion, cysteine, and cystine) on the aggregation of two different recombinant fusion proteins expressed by Chinese hamster ovary (CHO) cells. Any strategy to reduce protein aggregation upstream during cell culture must also consider potential effects on critical upstream parameters such as cell growth, harvest titer, and protein sialylation levels. Manipulating the culture temperature shift and cystine concentration in the medium were both identified as effective and practical strategies for reducing protein aggregation in both CHO-cell expression systems. Furthermore, a combination of both strategies was more effective in reducing protein aggregation levels compared to either approach individually; and without any negative effects on harvest titer and protein sialylation. This study demonstrates a practical methodology for decreasing protein aggregation during upstream processing and emphasizes the importance of process understanding to ensure production of recombinant glycoprotein therapeutics with consistent product quality.  相似文献   

13.
Investigations on the role of calcium in regulation of cell morphology of Chinese hamster lung cells (V79) revealed that cells grown with additional calcium (5 mM) in the growth medium (Ham's F12) adhere more tightly to the substratum than those grown in F12 alone. Additional calcium in the medium did not cause any changes in the structural membrane proteins or glycoproteins. Radioiodination of the surface membrane proteins of cells grown with or without additional calcium showed distinct differences in the labeling profile. The most striking change observed in cells grown with additional calcium was a very heavily labeled protein band at 70 K molecular weight. Two bands at approx. 100 K and 42 K were also heavily labeled. In contrast, the amount of radioactivity of a protein band at 52 K decreased in the cells grown in additional calcium. In general, cells grown with additional CaCl2 were better iodinated than those grown in growth medium alone. The results demonstrate that calcium modulates surface proteins of V79 cells and this modulation may account for the changes observed in the cell morphology.  相似文献   

14.
Summary Changes in the permeability of the cell membrane in cultured Chinese hamster ovary cells at different stages of the cell cycle were investigated. These were followed by measuring the intracellular retention of fluorescein molecules produced by the enzymatic hydrolysis of fluoresceindiacetate in the cytoplasm of CHO cells. Rate constants for the permeation of fluorescein have been calculated.  相似文献   

15.
16.
Pesticide clastogenicity in Chinese hamster ovary cells   总被引:3,自引:0,他引:3  
M F Lin  C L Wu  T C Wang 《Mutation research》1987,188(3):241-250
Paraquat, alachlor, butachlor, phorate and monocrotophos, several of the most extensively used pesticides in Taiwan, were investigated for their clastogenicity using chromosome aberration (CAb) induction in Chinese hamster ovary (CHO) cells. Significance levels of the binomial trend analysis and binomial mutagenicity data test were two criteria for the summary judgement of the pesticide clastogenicity. Except for phorate, all pesticides tested were clastogenic to CHO cells in the absence of in vitro metabolic activation by S9. 5 microliters/ml rat-liver extract, S9, were used as the source of in vitro metabolic activation. 3 different outcomes were found after the addition of S9. Paraquat: significant decrease in induced CAbs. Monocrotophos: concomitant occurrence of decreased cytotoxicity and increased clastogenicity. Alachlor, butachlor and phorate: increased cytotoxicities with no sign of enhancement in clastogenicity.  相似文献   

17.
This study investigated the effects of ultrasound on the intracellular [Ca(2+)] of Chinese hamster ovary cells in the presence of albumin-encapsulated Optison microbubbles. Cells were exposed to 1 MHz ultrasound (tone burst of 0.2 s duration, 0.45 MPa peak pressure) while immersed in solution of 0.9 mM Ca(2+). Calcium imaging of the cells was performed using digital video fluorescence microscopy and Ca(2+)-indicator dye fura-2AM. Experimental evidence indicated that ultrasound caused a direct microbubble-cell interaction resulting in the breaking and eventual dissolution of the microbubble and concomitant permeabilization of the cells to Ca(2+). These cells exhibited a large influx of Ca(2+) over 3-4 s and did not return to their equilibrium levels. Subsequently, some cells exhibited one or more Ca(2+) oscillations with the onset of oscillations delayed by 10-80 s after the ultrasound pulse. A variety of oscillations were observed including decaying oscillations returning to the baseline value over 35-100 s, oscillations superimposed on a more gradual recovery over 150-200 s, and oscillations continued with increased amplitude caused by a second ultrasound tone burst. The delays in onset appeared to result from calcium waves that propagated across the cells after the application of the ultrasound pulse.  相似文献   

18.
Conventional stable protein expression systems using mammalian cells include a time-consuming step of antibiotic resistance-based cell cloning. Here, we report a rapid flow cytometry-based method for the collection of retrovirus vector-infected Chinese hamster ovary (CHO) cells that express desired proteins. The vector carries the genes for green fluorescent protein (GFP), as a marker, and glutathione-S-transferase (GST), to express the desired protein as a GST-fusion construct. To render CHO cells susceptible to retrovirus infection, they were forced to express EcoR, the receptor for retroviruses. After infection, cells expressing desired proteins were collected by flow cytometry as a GFP-positive population, and the desired proteins were purified by glutathione affinity chromatography. This method reduces the time required between infection of cells and purification of a desired protein from several months to approximately 2 weeks.  相似文献   

19.
Mammalian cells, cultured in the presence of serum lipoproteins, acquire cholesterol necessary for growth from the uptake and lysosomal hydrolysis of low-density lipoproteins (LDL). The mechanism(s) of intracellular transport of LDL-derived cholesterol from lysosomes to other cellular sites is unknown. In this study, various pharmacological agents were assessed for their ability to inhibit the movement of LDL-cholesterol from lysosomes to the plasma membrane. The only pharmacological agent tested in these experiments that specifically inhibited LDL-cholesterol movement was U18666A. Ketoconazole impaired the intracellular transport of LDL-cholesterol; however, ketoconazole also had a general effect on cholesterol movement, since it impeded the desorption of endogenously synthesized cholesterol into the medium. Other drugs that affected cholesterol movement appeared to be nonspecific. Cholesterol transport from lysosomes to plasma membranes was not significantly altered by agents that affect lysosomal function or cytoskeletal organization, as well as energy poisons and cycloheximide.  相似文献   

20.
To elucidate the metabolic characteristics of recombinant CHO cells expressing glutamine synthetase (GS) in the medium with or without glutamine, the concentrations of extra- and intracellular metabolites and the activities of key metabolic enzymes involved in glutamine metabolism pathway were determined. In the absence of glutamine, glutamate was utilized for glutamine synthesis, while the production of ammonia was greatly decreased. In addition, the expression of recombinant protein was increased by 18%. Interestingly, the intracellular glutamine maintained almost constant, independent of the presence of glutamine or not. Activities of glutamate-oxaloacetate aminotransferase (GOT), glutamate-pyruvate aminotransferase (GPT), and glutamate dehydrogenase (GDH) increased in the absence of glutamine. On the other hand, intracellular isocitrate and the activities of its downstream isocitrate dehydrogenase in the TCA cycle increased also. In combination with these two factors, a 8-fold increase in the intracellular α-ketoglutarate was observed in the culture of CHO-GS cells in the medium without glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号