首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ketone bodies (KB) have been shown to prevent neurodegeneration in models of Parkinson's and Alzheimer's diseases, but the mechanisms underlying these effects remain unclear. One possibility is that KB may exert antioxidant activity. In the current study, we explored the effects of KB on rat neocortical neurons exposed to hydrogen peroxide (H(2)O(2)) or diamide - a thiol oxidant and activator of mitochondrial permeability transition (mPT). We found that: (i) KB completely blocked large inward currents induced by either H(2)O(2) or diamide; (ii) KB significantly decreased the number of propidium iodide-labeled cells in neocortical slices after exposure to H(2)O(2) or diamide; (iii) KB significantly decreased reactive oxygen species (ROS) levels in dissociated neurons and in isolated neocortical mitochondria; (iv) the electrophysiological effects of KB in neurons exposed to H(2)O(2) or diamide were mimicked by bongkrekic acid and cyclosporin A, known inhibitors of mPT, as well as by catalase and DL - dithiothreitol, known antioxidants; (v) diamide alone did not significantly alter basal ROS levels in neurons, supporting previous studies indicating that diamide-induced neuronal injury may be mediated by mPT opening; and (vi) KB significantly increased the threshold for calcium-induced mPT in isolated mitochondria. Taken together, our data suggest that KB may prevent mPT and oxidative injury in neocortical neurons, most likely by decreasing mitochondrial ROS production.  相似文献   

4.
《Chronobiology international》2013,30(9):1254-1263
The circadian clock regulates many cellular processes, notably including the cell cycle, metabolism and aging. Mitochondria play essential roles in metabolism and are the major sites of reactive oxygen species (ROS) production in the cell. The clock regulates mitochondrial functions by driving daily changes in NAD+ levels and Sirt3 activity. In addition to this central route, in the present study, we find that the expression of some mitochondrial genes is also rhythmic in the liver, and that there rhythms are disrupted by the ClockΔ19 mutation in young mice, suggesting that they are regulated by the core circadian oscillator. Related to this observation, we also find that the regulation of oxidative stress is rhythmic in the liver. Since mitochondria and ROS play important roles in aging, and mitochondrial functions are also disturbed by aging, these related observations prompt the compelling hypothesis that circadian oscillators influence aging by regulating ROS in mitochondria. During aging, the expression rhythms of some mitochondrial genes were altered in the liver and the temporal regulation over the dynamics of mitochondrial oxidative stress was disrupted. However, the expression of clock genes was not affected. Our results suggested that mitochondrial functions are combinatorially regulated by the clock and other age-dependent mechanism(s), and that aging disrupts mitochondrial rhythms through mechanisms downstream of the clock.  相似文献   

5.
The permeability transition pore (PTP) is a Ca2+‐dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)‐ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP‐dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch‐clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F‐ATP synthase.  相似文献   

6.
Pannexins, which contain three subtypes: pannexin‐1, ‐2, and ‐3, are vertebrate glycoproteins that form non‐junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
  相似文献   

7.
F‐ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F‐ATP synthases can also undergo a Ca2+‐dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy‐conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the “Ca2+‐trigger site” of the PTP to the catalytic site of the F‐ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+‐ATP hydrolysis, confer resistance to Ca2+‐induced, PTP‐dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F‐ATP synthase to a channel and of its role in cell death.  相似文献   

8.
We recently reported that Adenosine-5′-triphosphate (ATP) is able to inhibit the inflammatory reaction in stimulated whole blood. Many diseases, in which inflammatory reactions are involved, are associated with oxidative stress. In the present study, we therefore, investigated the effect of ATP on cytokine release in stimulated whole blood under conditions of oxidative stress, as simulated by pre-incubation of blood with hydrogen peroxide (H2O2). In the presence of H2O2, ATP at concentrations of 100 and 300 μM inhibited Tumour Necrosis factor-alpha (TNF-α) release and stimulated IL-10 release in LPS-PHA stimulated whole blood. Moreover, electron spin resonance (ESR) measurements showed that ATP and its breakdown product Adenosine-5′-diphosphate (ADP) attenuated spin trap-hydroxyl radical adduct formation in the Fenton reaction. Our results demonstrate that even in circumstances of severe oxidative stress, ATP has marked anti-inflammatory properties in stimulated whole blood. Moreover, the inhibition of the hydroxyl radical ESR signal indicates a direct attenuation of oxidative stress by ATP.  相似文献   

9.
Abstract

Exercise-induced changes in p66Shc-dependent signaling pathway are still not fully understood. The p66Shc protein is one of the key players in cell signaling, particularly in response to oxidative stress. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the phosphorylation of p66Shc as well as the induction of mitochondrial and cellular oxidative stress in rat hearts.

Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their hearts were removed immediately for experiments.

The exercise protocol caused increased levels of the following oxidative stress parameters in cardiac cells: DNA damage, protein carbonyls, and lipid dienes. There was also increased phosphorylation of p66Shc without any alterations in Akt and extracellular signal-regulated kinases. Changes in the ferritin L levels and the L to H subunit ratio were also observed in the exercised hearts compared with the control hearts. Despite increased phosphorylation of p66Shc, no significant increase was observed in either mitochondrial H2O2 release or mitochondrial oxidative stress markers. Regardless of the changes in phosphorylation of p66Shc, the antioxidant enzyme activities (superoxide dismutase and catalase) and anti-apoptotic (Bcl2), and pro-apoptotic (Bax) protein levels were not affected by prolonged swimming. Further studies are required to investigate whether p66Shc phosphorylation is beneficial or detrimental to cardiac cells after exercise cessation.  相似文献   

10.
Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro‐apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary.  相似文献   

11.
Tungstate (W) is recognized as an agent of environmental pollution and a substitute to depleted uranium. According to some preliminary studies, tungstate toxicity is related to the formation of reactive oxygen species (ROS) under abnormal pathological conditions. The kidneys and liver are the main tungstate accumulation sites and important targets of tungstate toxicity. Since the mitochondrion is the main ROS production site, we evaluated the mechanistic toxicity of tungstate in isolated mitochondria for the first time, following a two‐step ultracentrifugation method. Our findings demonstrated that tungstate‐induced mitochondrial dysfunction is related to the increased formation of ROS, lipid peroxidation, and potential membrane collapse, correlated with the amelioration of adenosine triphosphate and glutathione contents. The present study indicated that mitochondrial dysfunction was associated with disruptive effects on the mitochondrial respiratory chain and opening of mitochondrial permeability transition (MPT) pores, which is correlated with cytochrome c release. Our findings suggest that high concentrations of tungstate (2 mM)‐favored MPT pore opening in the inner membranes of liver and kidney mitochondria of rats. Besides, the results indicated higher tungstate susceptibility in the kidneys, compared with the liver.  相似文献   

12.
It is well established that several iron complexes can induce oxidative damage in hepatic mitochondrial membranes by catalyzing the formation of ·OH radicals and/or by promoting lipid peroxidation. This is a relevant process for the molecular basis of iron overload diseases. The present work demonstrates that Fe(II)ATP complexes (5–50M) promote an oxygen consumption burst in a suspension of isolated rat liver mitochondria (either in the absence or presence of Antimycin A), caused mainly by lipid peroxidation. Fe(II)ATP alone induced small levels of oxygen uptake but no burst. The time course of Fe(II)ATP oxidation to Fe(III)ATP in the extramitochondrial media also reveals a simultaneous burst phase. The iron chelator Desferal (DFO) or the chain-break antioxidant butylated hydroxytoluene (BHT) fully prevented both lipid peroxidation (quantified as oxygen uptake burst) and mitochondrial swelling. DFO and BHT were capable of stopping the ongoing process of peroxidation at any point of their addition to the mitochondrial suspension. Conversely, DFO and BHT only halted the Fe(II)ATP-induced mitochondrial swelling at the onset of the process. Fe(II)ATP could also cause the collapse of mitochondrial potential, which was protected by BHT if added at the onset of the damaging process. These results, as well as correlation studies between peroxidation and mitochondrial swelling, suggest that a two phase process is occurring during Fe(II)ATP-induced mitochondrial damage: one dependent and another independent of lipid peroxidation. The involvement of lipid peroxidation in the overall process of mitochondrial membrane injury is discussed.Abbreviations AA Antimycin A - BHT butylated hydroxytoluene - EGTA ethylene glycol-bis(-aminoethyl ether) - N,N,N,N tetraacetic acid - DFO Desferal - HEPES N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - SOD superoxide dismutase - TPP+ tetraphenylphosphonium bromide - TBARS thiobarbituric acid reactive substances  相似文献   

13.
Ethanol-induced oxidative stress in rat astrocytes: role of HSP70   总被引:6,自引:0,他引:6  
Ethanol intake is associated with increase in lipid peroxidation and formation of reactive oxygen species in different cerebral areas, in neurons as well as in astrocytes. The latter's integrity is essential for the normal growth of neurons. In previous studies we observed, in different cerebral areas of both acutely and chronically ethanol-treated rats, correlation between ethanol-induced oxidative stress and the increased expression of HSP70 (70 kDa heat shock proteins), chaperonins having a protective and stabilizing effect on stress–induced cell injury. In this study we examined, in vitro, the role of HSP70 on chronically ethanol-treated rat astrocytes by transfection with an anti-HSP70 antisense oligonucleotide. The results show that treatment with ethanol, from 50 to 100 mmol/L, induces a dose-dependent increase in the production of reactive oxygen species and of HSP70 levels, together with an impairment of the respiratory chain activity and a decrease in cell viability. In addition, our data indicate a drastic reduction of cellular metabolism in HSP70-deprived astrocytes, particularly when these cells were also ethanol-treated. In fact, transfection with HSP70 antisense induced moderate oxidative damage in control astrocytes and, consequently, a drastic decrease in the viability of ethanol-treated cells, with the mitochondrial functionality being particularly affected. Our results confirm that heat shock proteins confer a survival advantage to the astrocytes, preventing oxidative damage and nuclear DNA damage as well, and suggest the development of new drugs exerting a cytoprotective role either in physiological, or pathological conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Gender is a profound determinant of aging and lifespan, but little is known about gender differences in free radical homeostasis. Free radicals are proposed as key elements in the multifactorial process of aging and it is predicted that the longer-lived gender should have lower levels of oxidative stress. While the majority of studies on aging have included a single gender, recent studies in rats compared genders and found that females, the longer-lived sex, had lower oxidative stress and mitochondrial dysfunction than males. We explored the association between oxidative stress and gender-specific aging in C57BL6 mice, in which females are the shorter-lived gender. Reactive oxygen species (ROS) were measured in young and old mice by confocal imaging of dihydroethidium (DHE) oxidation in the brain, and by electron paramagnetic resonance (EPR) spectrometry of isolated brain mitochondria. Both genders exhibited significant age-dependent increases in ROS. However, females had a greater increase with age than males in DHE oxidation but not mitochondrial EPR. Superoxide dismutase 1 (Sod1) and glutathione peroxidase 1 (GPx1) protein levels were lower in old females. To determine whether enhancing antioxidant defenses would eliminate gender differences in lifespan, mice were treated chronically with a superoxide dismutase mimetic. Treatment blocked the age-dependent increase in ROS, with a greater effect in females on DHE oxidation, but not mitochondrial EPR. Treatment also increased lifespan to a greater degree in females. Our results indicate that differences in ROS homeostasis contribute to gender divergence in survival, but also suggest that mitochondrial superoxide production may not be primarily responsible for gender differences in lifespan.  相似文献   

15.
16.
Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2.  相似文献   

17.
Sarcopenia, which refers to the muscle loss that accompanies aging, is a complex neuromuscular disorder with a clinically high prevalence and mortality. Despite many efforts to protect against muscle weakness and muscle atrophy, the incidence of sarcopenia and its related permanent disabilities continue to increase. In this study, we found that treatment with human placental hydrolysate (hPH) significantly increased the viability (approximately 15%) of H2O2-stimulated C2C12 cells. Additionally, while H2O2-stimulated cells showed irregular morphology, hPH treatment restored their morphology to that of cells cultured under normal conditions. We further showed that hPH treatment effectively inhibited H2O2-induced cell death. Reactive oxygen species (ROS) generation and Mstn expression induced by oxidative stress are closely associated with muscular dysfunction followed by atrophy. Exposure of C2C12 cells to H2O2 induced abundant production of intracellular ROS, mitochondrial superoxide, and mitochondrial dysfunction as well as myostatin expression via nuclear factor-κB (NF-κB) signaling; these effects were attenuated by hPH. Additionally, hPH decreased mitochondria fission–related gene expression (Drp1 and BNIP3) and increased mitochondria biogenesis via the Sirt1/AMPK/PGC-1α pathway and autophagy regulation. In vivo studies revealed that hPH-mediated prevention of atrophy was achieved predominantly through regulation of myostatin and PGC-1α expression and autophagy. Taken together, our findings indicate that hPH is potentially protective against muscle atrophy and oxidative cell death.  相似文献   

18.
Ca(2+)-mediated mitochondrial permeability transition (mPT) is the final common pathway of stress-induced cell death in many major pathologies, but its regulation in intact cells is poorly understood. Here we report that the mitochondrial carrier SCaMC-1/SLC25A24 mediates ATP-Mg(2-)/Pi(2-) and/or HADP(2-)/Pi(2-) uptake into the mitochondria after an increase in cytosolic [Ca(2+)]. ATP and ADP contribute to Ca(2+) buffering in the mitochondrial matrix, resulting in desensitization of the mPT. Comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed and cancer cells. Knockdown of the transporter led to vast reduction of mitochondrial Ca(2+) buffering capacity and sensitized cells to mPT-mediated necrotic death triggered by oxidative stress and Ca(2+) overload. These findings revealed that SCaMC-1 exerts a negative feedback control between cellular Ca(2+) overload and mPT-dependent cell death, suggesting that the carrier might represent a novel target for cancer therapy.  相似文献   

19.
20.
Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1‐ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy‐dissipating channel involved in cell death. We investigated whether aging alters FoF1‐ATP synthase self‐assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1‐ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1‐ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes’ susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1‐ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1‐ATP synthase glycation in H9c2 myoblasts recapitulated the age‐related defective FoF1‐ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1‐ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号