首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There has been considerable interest in recent years in possible neurochemical abnormalities in Tourette's Syndrome (TS). In studies combining neuropsychological and neurochemical measurements, we have investigated the possible roles of trace amines in this disorder. Urinary levels of free -phenylethylamine (PEA) and plasma levels of its precursor amino acid phenylalanine were decreased in TS patients when compared to values in normal children. These urinary PEA levels in TS patients were inversely related to several scores from the Tourette's Syndrome Global Scale (TSGS). Further investigation of the group of subjects with low urinary PEA indicated that they also had low levels of MHPG, normetanephrine, 5-HT andm- andp-tyramine. Patients with low PEA were also compared on an extensive battery of neuropsychological measures and observed to perform significantly worse than TS patients with normal urinary PEA levels. Biochemical measurements also suggest a possible abnormality in tryptamine turnover in TS since urinary levels of indole-3-acetic acid (IAA; the acid metabolite of tryptamine) are significantly lower in TS patients than in normal controls.  相似文献   

2.
1. Comparative analyses of regional brain biogenic amines and spontaneous locomotor activity of three mouse strains suggest a genotype dependent relationship. 2. A positive correlation between striatal dopamine and locomotor activity was determined in the inbred albino BALB/c mouse strain. 3. An inverse relationship between some brain regions serotonin and motility was found in the inbred black C57BL/6 mouse strain. 4. No correlation could be established between brain monoamines and motor activity in the hybrid CDF-1 mouse strain. 5. The results suggest that inbred BALB/c and C57BL/6 mouse strains may be useful animal models for studying dopaminergic and serotonergic acting agents, respectively.  相似文献   

3.
Distribution of catecholamines and serotonin in the thalamus and hypothalamus of the brain was studied as affected by hypothermia. Both single and double hypothermia are found to induce considerable shifts in distribution of these amines. In the both regions of the brain the content of serotonin increases greatly, that of dopamine and adrenaline rises to a less extent. The amount of norepinephrine as compared to the control in unchanged.  相似文献   

4.
5.
6.
A bioluminescent procedure to measure noradrenaline and serotonin has been realized. The amines are oxidized by the monoamine oxidase of pig brain mitochondria. The NH3 generated in this reaction is directly measured by enzymatic reaction. The coenzyme of this last reaction is the NADH,H+ which is measured with a bioluminescent system: the FMN-oxidoreductase-luciferase. The extension to other amines is possible, it depends only of the specificity of the monoamine oxidase.  相似文献   

7.
8.
Sojourners to high altitude experience poor-quality of sleep due to hypobaric hypoxia (HH). Brain neurotransmitters are the key regulators of sleep wakefulness. Scientific literature has limited information on the role of brain neurotransmitters involved in sleep disturbance in HH. The present study aimed to investigate the time dependent changes in neurotransmitter levels and enzymes involved in the biosynthesis of brain neurotransmitters in frontal cortex, brain stem, cerebellum, pons and medulla and the effect of these alterations on sleep architecture in HH. Thirty adult Sprague-Dawley rats, body weight of 230-250 g were exposed to simulated altitude ~7620 m, 282 mm Hg, partial pressure of O(2) 59 mm Hg for 7 and 14 days continuously in an animal decompression chamber. After 7 and 14 days of HH, brain nor-epinephrine and dopamine levels were significantly increased in frontal cortex, brain stem, cerebellum and pons and medulla whereas serotonin level was significantly reduced in frontal cortex and pons and medulla after 14 days of HH. Tyrosine hydroxylase level in locus coeruleus (LC) was significantly increased whereas Choline Acetyl Transferase and Glutamic Acid Decarboxylase (GAD) levels were significantly reduced in laterodorsal-tegmentum and pedunculopontine-tegmentum after 7 days of HH. GAD was also reduced in LC after 7 days HH. Alteration in these neurotransmitters and enzyme levels was accompanied with reduction in quality and quantity of sleep. There was a significant increase in sleep latency, rapid eye movement (REM) latency, duration of active awake, quiet awake, quiet sleep and a significant decrease in duration of REM sleep and deep sleep on day 7 and 14 of HH. It was concluded that HH alters the expression of enzymes linked to sleep neurotransmitter synthesis pathway and subsequent loss of homeostasis at neurotransmitter level disrupts the sleep pattern in hypobaric hypoxia.  相似文献   

9.
Alterations in striatal and hippocampal dopamine (DA) and serotonin (5HT) activities were investigated in two inbred strains of mice (C57B1 and Balb/c) after 3 withdrawal periods following 5 months chronic ethanol administration. Two groups of animals with different levels of ethanol administration (15% and 30%, v/v) were examined. A striking strain dependency has been noted. Striatal dopaminergic mechanisms of the Balb/c strain are profoundly disturbed in both groups. In contrast no changes were noted for either transmitter activities in C57B1 mice at any withdrawal time studied. Strain dependency has also been noted for hippocampal serotonin neurotransmission, since only Balb/c mice showed a progressive decrease in 5HT levels. These impairments observed in striatum and hippocampus could be involved in motor incoordinations and convulsions often associated with the withdrawal syndrome. The differences in withdrawal effects we noted between the two strains may be linked to the specific chemical neuroanatomy of the strains. Such specificities could be implied in the well known variability of withdrawal induced behavior in man.  相似文献   

10.
A purification procedure for rat and mouse brain histamine N-methyltransferase (HMT, EC 2.1.1.8) is described which achieves the preparation of 87-fold purified rat brain and 166-fold purified mouse brain enzyme. The purified HMT (MW 29,000) is inhibited by a number of physiologically and pharmacologically active amines, among them several methylated indoleamines, at concentrations above 5 ± 10-6M. At concentrations below 1 ± 10-7M, most of the methylated indoleamines stimulate HMT , provided histamine is maintained at, or close to, its optimal concentration as an HMT substrate, namely 1 ± 10-5M. A study of the nature of the inhibitory process revealed a non-competitive inhibition of HMT by dopamine as against a competitive inhibition of the enzyme by most methylated indoleamines. Increasing the concentration of histamine beyond the optimal value, i.e. to inhibitory levels, resulted in less stimulation. The findings support the notion that MSO elicits the formation in selected brain cells of supranormal amounts of several methylated indoleamines which are able to stimulate HMT (and possibly other methyltransferases, see Salas et al., 1977), thereby causing the depletion of the cerebral levels of S-adenosyl-L-methionine, reported previously (Schatz & Sellinger , 1975b).  相似文献   

11.
Mature honeybees (Apis mellifera L.) old enough to forage (>3 weeks) were segregated into three activity groups: waggle dancers (active foragers), followers of the dancers (potential recruits) and resting bees (not involved in foraging). Dopamine (DA) pathways in the brain of honeybees seemed to be involved in regulation of forager recruitment. Brain DA and N-β-alanyldopamine (NBAD) levels in the dancers were always higher than in followers, and an increased number of dancers was observed after feeding the colony dihydroxy-phenylalanine (DOPA). Dopamine is hypothesized to modulate the neural activity in the calyx of the mushroom bodies related to recruitment behavior. No consistant effect of octopamine (OA) or serotonin (5HT) on recruitment behavior was observed. Levels of all biogenic amines were strongly effected by season and day-to-day whether changes. Some diurnal changes were also observed.  相似文献   

12.
Chronic dietary exposure to dieldrin in mallard ducks caused an appreciable depletion of brain serotonin, norepinephrine and dopamine, but not of gamma-aminobutyrate. Such alterations may account for the toxic effects in animals following chronic pesticide exposure. Changes in brain biogenic amines may possibly be related to behavioral disorders following exposure to such environmental contaminants.  相似文献   

13.
The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindolaecetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems.  相似文献   

14.
The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4-diaminobutane (or spermidine), diethylenetriamine; tetramine: N,N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-)(1). For all the systems, the formation of (am)L(2)H(i) species was found (am=amine; L=polyelectrolyte; i=1...4, depending on the amine considered). The stability of polyanion-polyammonium cation complexes is always significant, and for high-charged polycations, we observe a stability comparable to that of strong metal complexes. For example, by considering the formation reaction (am)H(i)+2L=(am)L(2)H(i) we found log K(i)=6.0, 6.5 and 10.8 for i=1, 2 and 3, respectively, in the system alginate-spermidine. Low and positive formation DeltaH(degrees) values indicate that the main contribution to the stability is entropic in nature. The sequestering ability of polyelectrolytes toward amines was modelled by a sigmoid Boltzman type equation. Some empirical relationships between stability, charges and DeltaG(degrees) and TDeltaS(degrees) are reported. Mean values per salt bridge of formation thermodynamic parameters (DeltaX(degrees) (n)) are DeltaG(degrees) (n)=-5.8+/-0.4, DeltaH degrees (n)=0.7+/-0.5 and TDeltaS(degrees) (n)=6.5+/-0.5 kJmol(-)(1) for all the systems studied in this work.  相似文献   

15.
N Subramanian 《Life sciences》1977,20(9):1479-1484
Practically no work has been done on the role of ascorbic acid in brain, presumably assuming the homogeneity of the vitamin in the brain. On the contrary, the regional distribution of ascorbic acid differs very much and could be altered by conditions enhancing the neurotransmitter concentration in the different regions. The importance of ascorbic acid in the metabolism of the putative neurotransmitters has been surveyed and a hitherto unexplored area of the role of vitamin C has been given importance in this article.  相似文献   

16.
17.
The effects of central (intracerebroventricular, 9 g fish–1) and peripheral (intraperitoneal, 4 mg kg–1) administration of bovine insulin, as well as the effect of hyperglycemia (oral administration of 1 g glucose fish–1) and brain glucodeprivation (intracerebroventricular administration of 2-deoxy-D-glucose) on food intake and levels of brain (telencephalon, preoptic area, and hypothalamus) biogenic amines (serotonin, dopamine, noradrenaline and their metabolites 5-hydroxyindoleacetic acid, and dihydroxyphenylacetic acid) were assessed on rainbow trout (Oncorhynchus mykiss). Treatment with insulin inhibited food intake after 26 or 52 h of administration, central or peripheral, respectively. This effect was still apparent after 74 h of central treatment. When assessing changes in the levels of biogenic amines after 26 h of central insulin administration, there was a significant increase in the levels of 5-hydroxyindoleacetic acid, and in the ratio of dihydroxyphenylacetic acid/dopamine of insulin-treated fish, in telencephalon and hypothalamus, respectively. These results suggest that peripherally administered insulin is involved in a feedback regulatory loop with food intake and body weight. Moreover, at least part of the effects of insulin could be mediated by hypothalamic dopaminergic activity. The strong hyperglycemia induced by oral administration of glucose did not induce significant changes either on food intake (control versus treated), or in brain levels of biogenic amines. The intracerebroventricular administration of 2-deoxy-D-glucose induced an increase in food intake without altering plasma glucose levels, suggesting that fish brain possesses a control system for detecting hypoglycemia in plasma and therefore keep brain glucose levels high enough for brain function.Abbreviations 2-DG 2 Deoxy-D-glucose - 5-HIAA 5-Hydroxyindoleacetic acid - 5-HT 5-Hydroxytryptamine or serotonin - DA Dopamine - DOPAC Dihydroxyphenylacetic acid - EDTA Ethylenediaminetetraacetic acid - FI Food intake - HPLC High pressure liquid chromatography - icv Intracerebroventricular - i.p. Intraperitoneal - MS 222 3-Aminobenzoic acid ethyl esther methanesulfonate salt - NA Noradrenaline  相似文献   

18.
19.
20.
The tricyclic antidepressant imipramine and its metabolites desipramine, 2-hydroxyimipramine and 2-hydroxydesipramine are all pharmacologically active in the central nervous system as determined by in vitro inhibition of biogenic amine uptake by rat brain synaptosomes and their in vivo effect on spontaneous and forced motor activity. Since in vivo hydroxylation of both imipramine and desipramine produced compounds of similar pharmacological activity as the parent compounds, these results suggest that clinical studies relating plasma levels of tricyclic antidepressants to efficacy should also take into consideration the levels of hydroxylated metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号