首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In broadcast spawners, prezygotic reproductive isolation depends on differences in the spatial and temporal patterns of gamete release and gametic incompatibility. Typically, gametic incompatibility is measured in no‐choice crosses, but conspecific sperm precedence (CSP) can prevent hybridization in gametes that are compatible in the absence of sperm competition. Broadcast spawning corals in the Montastraea annularis species complex spawn annually on the same few evenings. Montastraea franksi spawns an average of 110 min before M. annularis, with a minimum gap of approximately 40 min. Gametes are compatible in no‐choice heterospecific assays, but it is unknown whether eggs exhibit choice when in competition. Hybridization depends on either M. franksi eggs remaining unfertilized and in proximity to M. annularis when the latter species spawns or M. franksi sperm remaining in sufficient viable concentrations when M. annularis spawns. We found that the eggs of the early spawning M. franksi demonstrate strong CSP, whereas CSP appears to be lacking for M. annularis eggs. This study provides evidence of diverging gamete affinities between these recently separated species and suggests for the first time that selection may favour CSP in earlier spawning species when conspecific sperm is diluted and aged and is otherwise at a numeric and viability disadvantage with heterospecific sperm.  相似文献   

2.
The Caribbean coral Montastraea annularis has recently been proposed to be a complex of at least three sibling species. To test the validity of this proposal, we sequenced the ITS region of the nuclear ribosomal RNA gene family (ITS-1, 5.8S, and ITS-2), and a portion of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) from the three proposed species (M. annularis, M. faveolata, and M. franksi) from Florida reefs. The ITS fragment was 665 nucleotides long and had 19 variable sites, of which 6 were parsimony-informative sites. None of these sites was fixed within the proposed species. The COI fragment was 658 nucleotides long with only two sites variable in one individual. Thus, under both the biological species concept and the phylogenetic species concept, the molecular evidence gathered in this study indicates the Montastraea annularis species complex to be a single evolutionary entity as opposed to three distinct species. The three proposed Montastraea species can interbreed, ruling out prezygotic barriers to gene flow (biological species concept), and the criterion of monophyly is not satisfied if hybridization is occurring among taxa (phylogenetic species concept). Received January 20, 1998; accepted September 30, 1998.  相似文献   

3.
The reef coral Montastraea annularis has been used in a wide range of investigations. Recently, it has been recognized as a complex of three species based on field observations of the variation in colony shape. These observations have also been confirmed by molecular methods as well as morphometrics on individual corallites in the colonies. This paper presents a new quantitative method for measuring overall colony shape based on geostatistics. Seventeen colonies collected from San Blas, Panama in 1995 and 1996 were examined using the Polhemus 3SPACE FASTRAK system to construct three-dimensional coordinates of the center of several hundred corallites in each colony. This method measures the larger bumps or “ridges” as well as the smaller bumps or “lumps” of the colonies. Variograms were then calculated for all the specimens and the lag distances and the values of the variogram were used in a multivariate statistical analysis. Overall, this method indicated that M. annularis and Montastaea faveolata overlap in their relative amount of bumpiness in colony shape while Montastraea franksi is distinct from the other two species. This method has implications for both the modern and fossil record of Montastraea as well as other organisms with similar shapes.  相似文献   

4.
Patterns of associations between coral colonies and the major clades of zooxanthellae can vary across scales ranging from individual colonies to widely separated geographic regions. This is exemplified in this study of the Montastraea annularis species complex from six sites on the Mesoamerican Reef, Belize and nine sites in the Bocas del Toro archipelago, Panama. Restriction fragment length polymorphism (RFLP) analysis of small subunit ribosomal DNA (SSU rDNA) was used to identify the zooxanthellae. In Belize (M. annularis), Symbiodinium B (79% of the colonies), Symbiodinium A, and Symbiodinium C were observed. In Panama (primarily M. franksi, but also M. annularis and M. faveolata), there was greater diversity and evenness with Symbiodinium A, B, C, C′ (a new symbiont) and D all being common in at least some host/habitat combinations. Non-metric multidimensional scaling ordinations showed that distribution patterns of symbionts across sites are best explained by enclosure (relative influence of open ocean vs. coastal water) and total suspended solids. Because members of clade D are known to be temperature resistant and Symbiodinium C′ was found in environments characterized by high sedimentation, these Panamanian reefs may have importance from a management perspective as reservoirs of corals better able to tolerate human impacts.  相似文献   

5.
Parrotfish are important members of coral reef communities because they consume macroalgae that would otherwise outcompete reef-building corals for space. However, some Caribbean parrotfish species also feed directly on live corals, and thus have the potential to negatively impact coral fitness and survival. This study investigates selective grazing by parrotfish on particular coral species, differences in grazing incidence among reef habitats and intraspecific discrimination among colonies of several coral species. We also investigate spatial and temporal patterns of parrotfish species abundance across habitats on the Belize barrier reef, and examine correlations between parrotfish abundance and grazing intensity across reef habitats. We found that members of the Montastraea annularis species complex, major builders of Caribbean reefs, were preferred targets of parrotfish grazing across all reef habitats, while M. cavernosa, Agaricia agaricites, Diploria strigosa, Porites astreoides and Porites porites were not preferred; Siderastrea siderea was preferentially grazed only in the spur and groove habitats. Parrotfish grazing preferences varied across habitats; M. annularis was grazed most often in shallow habitats, whereas M. franksi was consumed more at depth. Although it was not possible to directly observe parrotfish grazing on corals, we did find a positive correlation between Sparisoma aurofrenatum abundance and M. franksi grazing incidence across habitats. Finally, when we compared our results to parrotfish abundances measured by a previous study, we found that Sparisoma viride and Sp. aurofrenatum, two species known to be corallivorous, had increased abundances between 1982 and 2004. In light of escalating threats on Caribbean reef corals, it would be important for future studies to evaluate the impact of parrotfish corallivory on coral survival.  相似文献   

6.
Thirteen reef areas of Colombian territories in the Southwestern Caribbean were surveyed during the last 10 years. Coral diseases have been recorded in all these areas since 1990 and some of them have increased progressively. Six types were differentiated in the region, of which black band disease (BBD), dark spots disease (DSD), white band disease (WBD) and white plague disease (WPD) are widespread and common. Yellow band disease (YBD) was observed only since April 1998 but has been found now in seven reef areas and eight coral species (most of them recorded here as new hosts). In total, 25 species of hard corals were observed with diseases in the region, of which Colpophyllia natans, Diploria labyrinthiformis, Montastraea annularis, M. faveolata, M. franksi and Acropora spp. appear to be highly susceptible.  相似文献   

7.
We report the isolation and characterization of seven microsatellite loci from the Caribbean reef‐building coral, Montastraea annularis. All loci are polymorphic with allele numbers ranging from five to 31 and observed heterozygosities from 0.17 to 0.89. These loci can be used in assessing gene flow patterns and diversity of this stony coral species both for local coral reef management purposes as well as for elucidating population connectivity within the greater Caribbean basin. These markers should also be applicable to other species of Montastraea and for resolving taxonomic relationships within the M. annularis species complex.  相似文献   

8.
Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747‐Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA‐sequencing, RAD‐sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA‐sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO‐lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage‐specific selection on mitochondria‐related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.  相似文献   

9.
Broadcast spawning by corals is a tightly synchronized process characterized by co-ordinated gamete release within 30–60 min time windows once per year. In shallow water corals, annual water temperature cycles set the month, lunar periodicity the day, and sunset time the hour of spawning. This tight temporal regulation is critical for achieving high fertilization rates in a pelagic environment. Given the differences in light and temperature that occur with depth and the importance of these parameters in regulating spawn timing, it has been unclear whether deeper coral can respond to the same environmental cues that regulate spawning behaviour in shallower coral. In this report, a remotely operated vehicle was used to monitor coral spawning activity at the Flower Garden Banks at depths from 33 to 45 m. Three species Montastraea cavernosa, Montastraea franksi, and Diploria strigosa were documented spawning within this depth range. All recorded spawning events were within the same temporal windows as shallower conspecifics. These data indicate that deep corals at this location either sense the same environmental parameters, despite local attenuation, or communicate with shallower colonies that can sense such spawning cues.  相似文献   

10.
Corals in certain Caribbean coral reef habitats are constantly grazed-on due to the territorial marking behavior of the stoplight parrotfish Sparisoma viride. We studied the grazing dynamics on the Caribbean reef-building coral Montastraea annularis. We transplanted colonies to algae-dominated reefs (Rosario Islands, Cartagena, Colombia), where they encountered higher grazing pressure. We counted grazed polyps every month throughout a year. Over the course of a year, 4,101 different grazed polyps were counted on lobe-like M. annularis transplants ( n =23). Grazing was evaluated on a monthly basis as the probabilities of all the possible transitions among four grazing categories (0%, >0–1%, >1–5%, >5% grazed tissue), uncovering a dynamic process. Higher transition probabilities were always between 0 and 1% (coral tissue grazed) grazing states, indicating that grazing did not usually exceed 1% per coral per month. The probability of remaining uninjured in a month was 0.19, 0.17 of a change from 0–1% grazing state, 0.31 of remaining at 1%, and of full recovery from 1% grazing was 0.16. More than one month was usually required for complete recovery ( P<<1) probably due to both steady grazing pressure and slow regeneration rates. Since the marking behavior of the parrotfish was not as common on other zones of the reef no comparison on the grazing among environments was possible. In spite of this, it is possible to have stable transplanted populations of corals such as M. annularis on algae-dominated Caribbean reef environments due to their tolerance to the natural grazing pressure.Communicated by: K. S. Sealey  相似文献   

11.
12.
Multivariate statistical tests are performed on three coral species to determine if a relationship exists between colony shape and corallite morphology. Hemispherical to branched colony shapes are emphasized. The material consists of specimens of Montastraea annularis and M. cavernosa from modern reef habitats in Jamaica. Colonies of the more branched M. limbata from the Neogene of the Dominican Republic are analyzed for comparison. The characters studied consist largely of linear measurements of colony dimensions and corallite structures in transverse thin-sections. The results show that different complexes of corallite characters vary within each species. With the possible exception of a complex describing theca thickness in M. annularis, none of these corallite complexes is related to variation in colony shape within species. Colony shape variation within species is related to upward colony growth rate. These results indicate that corallite morphology and colony shape can be represented by two different vectors of variation within species. Comparisons of intraspecific with interspecific patterns suggest that a strong genetic component explains colony shape variation in corals.  相似文献   

13.
Doubly uniparental inheritance of mtDNA (DUI) is commonly observed in several genera of bivalves. Under DUI, female offspring inherit mtDNA from their mothers, while male offspring inherit mtDNA from both parents but preferentially transmit the paternally inherited mtDNA to their sons. Several studies have shown that the female- and male-specific mtDNA lineages in blue mussels, Mytilus spp., vary by upward of 20% at the nucleotide level. In addition to high levels of nucleotide substitution, the present study observed substantial gender-based length polymorphism in the presumptive mitochondrial control region (=large unassigned region; LUR) of North American M. trossulus. In this species, female lineage LUR haplotypes are over 2 kb larger than male lineage LUR haplotypes. Analysis of sequence data for these length variants indicates that the F LUR haplotypes of North American M. trossulus contain sequences similar to the F lineage control region in the congeners M. edulis and M. galloprovincialis. Relative to the F LUR in the latter two species, however, the F lineage LUR haplotypes in M. trossulus contain two large sequence insertions, each nearly 1 kb in size. One of these insertions has high sequence similarity to the male lineage LUR of M. trossulus. The tandem arrangement of F and M control region sequences in the F lineage LUR of M. trossulus is most likely the result of nonhomologous recombination between the male and the female mitochondrial genomes in M. trossulus, a finding that has important implications regarding the transmission and evolution of blue mussel mitochondrial genomes. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

14.
This is the first report of Y-chromosome introgression between primate species. We sequenced 3.1 Kb of Y-chromosome DNA and 1.5 Kb of mtDNA for 27 macaques of Fooden's (Folia Primatol. [1976] 25: 225–236) fascicularis species group and 5 outgroup taxa (Macaca sylvanus, Papio hamadryas, Theropithecus gelada, Allenopithecus nigroviridis, and Cercopithecus mona). Phylogenies constructed separately for the paternal and maternal data sets show a Y-chromosome paraphyly among lineages of Macacafascicularis, but a mitochondrial monophyly for the same individuals. The Y-chromosome topology depicts Indochinese Macaca fascicularis haplotypes joining with those of M. mulatta, followed by M. cyclopis and M. fuscata, before clustering with a clade of lineages of M. fascicularis from peninsular Malaysia, Indonesia, and the Philippines. These contrasting patterns of mitochondrial and Y-chromosome DNA, evaluated in the context of the evolutionary consequences of macaque sex-biased dispersal, present strong evidence for contemporary hybridization between Macaca fascicularis and M. mulatta in Indochina and a biogeographic barrier in the Isthmus of Kra.  相似文献   

15.
Evidence suggests that the mitochondrial (mt)DNA of anthozoans is evolving at a slower tempo than their nuclear DNA; however, parallel surveys of nuclear and mitochondrial variations and calibrated rates of both synonymous and nonsynonymous substitutions across taxa are needed in order to support this scenario. We examined species of the scleractinian coral genus Acropora, including previously unstudied species, for molecular variations in protein-coding genes and noncoding regions of both nuclear and mt genomes. DNA sequences of a calmodulin (CaM)-encoding gene region containing three exons, two introns and a 411-bp mt intergenic spacer (IGS) spanning the cytochrome b (cytb) and NADH 2 genes, were obtained from 49 Acropora species. The molecular evolutionary rates of coding and noncoding regions in nuclear and mt genomes were compared in conjunction with published data, including mt cytochrome b, the control region, and nuclear Pax-C introns. Direct sequencing of the mtIGS revealed an average interspecific variation comparable to that seen in published data for mt cytb. The average interspecific variation of the nuclear genome was two to five times greater than that of the mt genome. Based on the calibration of the closure of Panama Isthmus (3.0 mya) and closure of the Tethy Seaway (12 mya), synonymous substitution rates ranged from 0.367% to 1.467% Ma−1 for nuclear CaM, which is about 4.8 times faster than those of mt cytb (0.076–0.303% Ma−1). This is similar to the findings in plant genomes that the nuclear genome is evolving at least five times faster than those of mitochondrial counterparts. I-Ping Chen and Chung-Yu Tang, co-first author (equal contribution)  相似文献   

16.
The large Myotis complex in continental Europe, Asia Minor, and Transcaucasia comprises two sibling bat species, the greater mouse‐eared bat, Myotis myotis, and the lesser mouse‐eared bat, Myotis blythii, also referred to as Myotis oxygnathus. Here, we investigate the phylogeography of these bats using two mitochondrial markers: the second hypervariable domain of the control region (HVII) and a fragment of the cytochrome b gene (cyt b). The HVII haplotypes formed six distinct haplogroups associated with different geographical regions. Most of the European HVII haplotypes were exclusive to M. myotis, whereas the majority of HVII haplotypes found in Asia Minor were exclusive to M. blythii/M. oxygnathus. The phylogenetic reconstruction based on the concatenated cyt b and HVII fragments recovered two major lineages. The first lineage comprised samples from Europe (western lineage), and the second lineage included samples from Asia Minor, Transcaucasia, Crimea, Western Ukraine, Thrace, the Balkans, and Eastern Europe (eastern lineage). The mitochondrial lineage of M. blythii, reported from Kyrgyzstan, was not present in Asia Minor and Transcaucasia. Therefore, we consider the possibility that the M. blythii/M. oxygnathus found in Europe, Asia Minor, and Transcaucasia are not recent descendants of the Central Asian M. blythii. Instead, we suggest that M. blythii/M. oxygnathus and M. myotis diverged through allopatric speciation in Asia Minor and Europe, and that they are represented by the eastern and western mitochondrial lineages. We also examine an alternative hypothesis: that the large Myotis complex consists of more than two species that diverged independently in Asia Minor and Europe through ecological speciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

17.
Stony Coral Tissue Loss Disease (SCTLD) is a devastating disease. Since 2014, it has spread along the entire Florida Reef Tract and into the greater Caribbean. It was first detected in the United States Virgin Islands in January 2019. To more quickly identify microbial bioindicators of disease, we developed a rapid pipeline for microbiome sequencing. Over a span of 10 days we collected, processed and sequenced coral and near-coral seawater microbiomes from diseased and apparently healthy Colpophyllia natans, Montastraea cavernosa, Meandrina meandrites and Orbicella franksi. Analysis of bacterial and archaeal 16S ribosomal RNA gene sequences revealed 25 bioindicator amplicon sequence variants (ASVs) enriched in diseased corals. These bioindicator ASVs were additionally recovered in near-coral seawater (<5 cm of coral surface), a potential reservoir for pathogens. Phylogenetic analysis of microbial bioindicators with sequences from the Coral Microbiome Database revealed that Vibrio, Arcobacter, Rhizobiaceae and Rhodobacteraceae sequences were related to disease-associated coral bacteria and lineages novel to corals. Additionally, four ASVs (Algicola, Cohaesibacter, Thalassobius and Vibrio) were matches to microbes previously associated with SCTLD that should be targets for future research. Overall, this work suggests that a rapid sequencing framework paired with specialized databases facilitates identification of microbial disease bioindicators.  相似文献   

18.
Mature colonies of Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander) were transplanted reciprocally between four reef environments near Discovery Bay, Jamaica. Multivariate analyses of variables describing corallite structures show that colonies of M. annularis change their skeletal morphology after transplantation from that characteristic of their original habitat to that characteristic of the environment to which they were moved. Control colonies of M. annularis, however, retain the morphology characteristic of their original habitat after manipulation. Many colonies of S. siderea similarly altered their morphology after transplantation, but some retained the morphology characteristic of their original habitat. Most control colonies of S. siderea did not change after manipulation. In general, control colonies of S. siderea show more morphologic variation between skeleton deposited before and after manipulation within colonies and also between colonies within populations, than did control colonies of M. annularis.These results indicate that, although M. annularis shows more plasticity than S. siderea. both species have highly plastic phenotypes. A large number of characters describing the architecture of corallites respond to environmental factors such as light intensity, sedimentation rate, water activity, and food availability. The most plastic characters in M. annularis describe coenosteal features and the thickness of thecae. The most plastic characters in S. siderea describe the thicknesses of thecae. septa, and columellae.This study suggests that phenotypic plasticity is an important species attribute in scieractinians and may be a significant mechanism in controlling the distribution and abundance of scleractinians on reefs.  相似文献   

19.
Recent advances in morphometrics and genetics have led to the discovery of numerous cryptic species in coral reef ecosystems. A prime example is the Montastraea annularis scleractinian coral species complex, in which morphological, genetic, and reproductive data concur on species boundaries, allowing evaluation of long-term patterns of speciation and evolutionary innovation. Here we test for cryptic species in the Atlantic species, Montastraea cavernosa, long recognized as polymorphic. Our modern samples consist of 94 colonies collected at four locations (Belize, Panamá, Puerto Rico in the Caribbean; S?o Tomé in the Eastern Atlantic). Our fossil samples consist of 78 colonies from the Plio-Pleistocene of Costa Rica and Panamá. Landmark morphometric data were collected on thin sections of 46 modern and 78 fossil colonies. Mahalanobis distances between colonies were calculated using Bookstein coordinates, revealing two modern and four fossil morphotypes. The remaining 48 of the 94 modern colonies were assigned to morphotype using discriminant analysis of calical measurements. Cross-tabulation and multiple comparisons tests show no significant morphological differences among geographic locations or water depths. Patterns of variation within and among fossil morphotypes are similar to modern morphotypes. DNA sequence data were collected for two polymorphic nuclear loci -tub1 and β-tub2) on all 94 modern colonies. Haplotype networks show that both genes consist of two clades, but morphotypes are not associated with genetic clades. Genotype frequencies and two-locus genotype assignments indicate genetic exchange across clades, and ϕst values show no genetic differentiation between morphotypes at different locations. Taken together, our morphological and genetic results do not provide evidence for cryptic species in M. cavernosa, but indicate instead that this species has an unusually high degree of polymorphism over a wide geographic area and persisting for >25 million years (myr).  相似文献   

20.
Relationships were analyzed between sea surface temperature (SST) and annual growth characteristics (density, extension rate and calcification rate) of the Caribbean reef-building coral Montastraea annularis. Colonies were collected from 12 localities in the Gulf of Mexico and the Caribbean Sea. Two well-separated relationships were found, one for the Gulf of Mexico and the other for the Caribbean Sea. Calcification rate and skeletal density increased with increasing SST in both regions, while extension rate tended to decrease. Calcification rate increased ∼0.57 g cm−2 year−1 for each 1 °C increase in SST. Zero calcification was projected to occur at 23.7 °C in corals from the Gulf of Mexico and at 25.5 °C in corals from the Caribbean Sea. The 24 °C annual average SST isotherm marks the northern limit of distribution of M. annularis. Montastraea annularis populations of the Gulf of Mexico are isolated from those of the Caribbean Sea, and results indicate that corals from the Gulf of Mexico are adapted to growth at lower minimum and average annual SST. Corals from both the Gulf of Mexico and the Caribbean Sea, growing at lower SSTs and having lower calcification rates, extend their skeletons the same or more than those growing at higher SSTs. They achieve this by putting more of their calcification resources into extension and less into thickening, i.e., by sacrificing density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号