首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
封面故事     
哺乳动物的嗅觉系统由嗅上皮、嗅球和更高级的嗅觉中枢组成。直接探测气味分子的细胞——嗅感觉神经元位于鼻腔内的嗅上皮上。嗅感觉神经元的纤毛上表达很多气味受体蛋白,这些蛋白可以检测进入鼻腔的气味分子。每个嗅感觉神经元只表达一种特定的气味受体。表达一种气味受体的嗅感觉神经元投射到嗅球中的一到两个嗅小球中,一  相似文献   

2.
嗅觉之谜--2004年诺贝尔生理学或医学奖简介   总被引:1,自引:0,他引:1  
瑞典卡罗林斯卡医学院于 2 0 0 4年 10月 4日宣布 ,将本年度诺贝尔生理学或医学奖授予美国科学家理查德·阿克赛尔 (RichardAxel)和琳达·巴克(LindaB .Buck) ,以分别表彰他们在气味受体 (odor antreceptors)和嗅觉系统 (olfactorysystem )组织方式研究中作出的杰出贡献[1] 。人的嗅觉粘膜中约有 5百万个嗅觉神经元。每一个嗅觉神经元至少有 10条细微的纤毛浸泡到细胞表面的薄层粘液中。科学家们相信 ,在这些纤毛中有识别并能结合气味分子的受体蛋白 ,从而刺激转换成神经冲动 (信号 )。当气味激活一个神经元时 ,信号便沿着神经细胞轴突而…  相似文献   

3.
嗅球对嗅觉信息的处理   总被引:2,自引:0,他引:2  
哺乳动物的嗅觉系统拥有惊人的能力,它可以识别和分辨成千上万种分子结构各异的气味分子。这种识别能力是由基因决定的。近年来,分子生物学和神经生理学的研究使得我们对嗅觉识别的分子基础和嗅觉系统神经连接的认识有了质的飞跃。气味分子的识别是由一千多种气味受体完成的,鼻腔中的嗅觉感觉神经元表达这些气味受体基因。每个感觉神经元只表达一种气味受体基因。表达同种气味受体的感觉神经元投射到嗅球表面的一个或几个嗅小球中,从而在嗅球中形成一个精确的二维连接图谱。了解嗅球对气味信息的加工和处理方式是我们研究嗅觉系统信号编码的一个重要环节。文章概述并总结了有关嗅球信号处理的最新研究成果。  相似文献   

4.
闻香识英雄     
某天清晨闻到的丁香花的独特花香,数年之后仍能记忆犹新,这究竟是为什么?人体能够分辨和记忆大约1万种不同的气味,人为何具有如此的"品"味能力?在人类诸种感觉中,嗅觉产生机理一直是最难解开的谜团之一。20世纪80年代,美国的两位科学家琳达·巴克、理查德·阿克塞尔决心用他们的精诚合作,叩开嗅觉科学的大门。阿克塞尔和巴克发现,人的鼻腔细胞膜上分布着不同气味受体。人体基因总数中的3%,即大约1000个基因,用于对气味受体进行编码,以分辨不同的气味。尽管气味受体只有大约1000种,但它们可以产生大量的组合,形成大量气味模式,这也就是人们能够辨别和记忆大约1万种不同气味的基础。有气味的物质首先会与气味受体结合,这些气味受体位于鼻内上皮的气味受体细胞中。气味受体被气味分子激活后,气味受体细胞就会产生电信号,这些信号随后被传输到大脑的嗅球的微小区域中,并进而传至大脑其他区域,结合成特定模式。由此,人就能有意识地感受到比如茉莉花的香味,并在另一个时候想起这种气味。不仅如此,人的嗅觉系统具有高度"专业化"的特征。比如,每个气味受体细胞仅表达出一种气味受体基因,气味受体细胞的种类与气味受体完全相同。气味受体细胞会将神经信号传递至大脑嗅球中被称为"嗅小球"的微小结构。人的大脑中约有2000个"嗅小球",数量是气味受体细胞种类的2倍。"嗅小球"也非常的"专业化",携带相同受体的气味受体细胞会将神经信号传递到相应的"嗅小球"中,也就是说,来自具有相同受体的细胞的信息会在相同的"嗅小球"中集中。"嗅小球"随后又会激活被称为僧帽细胞的神经细胞,每个"嗅小球"只激活一个僧帽细胞,使人的嗅觉系统中信息传输的"专业性"继续得到保持。僧帽细胞然后将信息传输到大脑其他部分。结果,来自不同类型气味受体的信息,组合成与特定气味相对应的模式,大脑最终有意识地感知到特定的气味。除了在理论上揭开人类嗅觉机能的秘密,两位科学家还发现,鱼的嗅觉器官中大约有100个气味受体,而老鼠却有大约1000个。如今,他们的一些基础研究理论已被运用到实际生活中。比如说,老鼠被训练搜寻地震后被埋在废墟下的人们。老鼠嗅觉灵敏,经过数月训练记住人类的气味后,科学家在它脑内植入电极,并与电子发报机相连。当它们被派往废墟现场,嗅到"目标"的气味之后,脑电波波动图形显示"啊哈,找到了"。此时,技术人员可通过设备确定小老鼠的位置,同时也就能知道被困人员的下落。比如说,日本科学家正在研发的一种"空气炮"。当人们在购物中心物色商品时,它会"开炮"——喷射一种特殊气味,譬如说新鲜面包味或是香水味,经过气味对大脑的刺激,消费者的购物欲望在不知不觉中被大大激发,皮夹中的钱则大把大把流向经营者腰包。虽然上世纪90年代初,两人的这一科学成就曾经在生命科学界引起了不小的轰动,但是他们并没有奢望某一天自己会捧得沉甸甸的诺贝尔奖。当2004年10月4日阿克塞尔得到这一突然而至的喜讯时,他几乎幸福地"晕过去"。瑞典一家广播电台为录制节目,深夜打电话到阿克塞尔位于美国加利福尼亚州的家中。电台记者告知他获奖并向其提问,阿克塞尔非常吃惊,说为获奖而感到荣幸,但强调自己从未想过会得到诺贝尔奖。"那真是不可思议,"他说,"我从未想过这些,我只是在想着我的科学。"记者又问,得知获奖消息后,他要做的第一件事是什么, 他回答说:"我要喝一杯咖啡。"巴克在家中接受美联社记者采访时同样对自己获奖一无所知。她说:"人们都这样说,‘你理应获得诺贝尔奖’,当然,我为此感到非常荣幸。"评委会把这一奖项颁给这两位科学家并非出于任何商业利益或医疗目的,而是为了"鼓励对人类一大重要感官的探索研究"。诺贝尔医学奖并没有设立任何具体的标准。阿尔弗雷德·诺贝尔当年在设立这项奖项时只是表示,该奖项的得主"必须是在医药或生理学领域做出最重要的贡献"。虽然这项成果目前在临床上的意义还很难预测,但这项开拓性的基础研究成果还是摘得了大奖。但评委之一的瑞典卡罗林斯卡医学院教授翁格斯泰特风趣地说:"至少我们终于知道人和人之间有多么不同。弄清楚了为什么有的人那么爱吃的某种食物,在另一些人那里却一点引不起食欲。"或许,翁格斯泰特教授对这一成就早已情有独钟。他说:"这两位教授已经被提名多次。从1991年他们发表那篇论文时,我们就开始关注了。"曾经获得诺贝尔奖的德国科学家胡贝尔曾经说过:我们不关心某个科学领域的应用技术突破,我们只想踏踏实实地搞好我们的基础研究。这种鼓励基础创新的精神正是设立诺贝尔奖的宗旨所在。  相似文献   

5.
昆虫感觉气味的细胞与分子机制研究进展   总被引:1,自引:1,他引:0  
张龙 《昆虫知识》2009,46(4):509-517
昆虫作为地球上最为成功的类群,已经成功地进化了精细的化学感受系统,通过化学感受系统适应各种复杂的环境,保持种群的繁荣。自1991年在动物中发现嗅觉受体基因以来,关于昆虫感受化学信息的周缘神经系统的分子和细胞机制方面的进展十分迅速。文章主要就昆虫周缘神经系统的感受化学信息的分子和细胞机制进行综述。首先对昆虫感觉气味的细胞机制的研究进展进行简要介绍。昆虫嗅觉神经元在感受化学信息过程中起着极为重要的作用,昆虫嗅觉神经元上表达的嗅觉受体不同而执行着各异的功能。各种嗅觉神经元对于化学信息的感受谱有较大的区别;嗅觉神经元对化学信息类型、浓度、流动动态等产生相应的电生理特征反应。研究表明同一种神经原可以感受多种化学信息,而一种化学信息也可以被多种神经原所感受。由神经原对化学信息感受所形成的特征组合就是感受化学信息的编码。其次较为详细地论述与昆虫感受气味分子相关的一些蛋白质的研究进展。气味分子结合蛋白是一类分子量较小、水溶性的蛋白,主要位于化学感受器神经原树突周围的淋巴液中。在结构上的主要特征是具有6个保守的半光氨酸和由6个α螺旋组成的结合腔。自1981年发现以来,已经在40余种昆虫中发现上百种。由于研究手段的不断进步,已经对该类蛋白的表达特征、结合特性以及三维结构和结合位点进行了大量的研究,提出了多个可能的功能假说,在诸多的假说中,较为广泛接受的是气味分子结合蛋白在昆虫感觉气味的过程中,是与疏水性的气味分子相结合,并将气味分子运输到嗅觉神经原树突膜上的嗅觉受体上。这些处于树突膜上的嗅觉受体则是昆虫感觉气味过程中的另一个十分重要的蛋白质。目前,已经在果蝇、按蚊、蜜蜂和家蚕等10余个昆虫种类中发现上百个嗅觉受体蛋白基因。这类蛋白是跨膜蛋白,一般具有7个跨膜区,整个蛋白的氨基酸残基在400~600个。昆虫的嗅觉受体蛋白的N-端在胞内,而C-端在胞外,这与G耦联蛋白不同。而且,昆虫的一个嗅觉神经元可以表达1~3个嗅觉受体蛋白,也与哺乳动物的一个神经元只表达一种受体蛋白有所不同。每种嗅觉受体可以感受多种气味分子,而一种气味分子可以被多个嗅觉受体所感知,这样组成了感受化学信息的编码谱。最近采用基因敲除技术和膜片钳技术研究发现,昆虫的嗅觉受体蛋白在信号传导中也有特殊性,即嗅觉受体可以直接作为离子通道,而引起动作电位。还有近来的研究表明,神经膜蛋白对于果蝇的性信息素感受神经元感受性信息素cVA是必要的。实际上,昆虫对于化学信息的感受和信号的转导,并不是上述蛋白单独起作用完成的,而是多种蛋白相互作用的结果。论文最后对该领域研究内容进行了展望。  相似文献   

6.
吴孝彬  陈壁辉 《动物学报》1992,38(2):118-123
本文通过光镜和扫描电镜研究了爬行动物扬子鳄鼻腔上皮的组织学。结果表明:其嗅觉上皮的组成细胞类型与两栖类、鸟类和哺乳类基本相似,但嗅细胞纤毛形状则有所不同;扬子鳄与两栖类、鸟类嗅纤毛相似,呈丝状,而哺乳类嗅觉纤毛则呈棍棒状;据外,扬子鳄鼻腔不同部位可发现不同类型嗅纤毛,鸟兽则无此现象,扬子鳄嗅觉上皮的分布仅局限于鼻腔中部前甲区和鼻甲区狭小范围,而兽类嗅觉上皮一般分布较广;扬子鳄呼吸上皮下未见兽类具有的混合型粘液腺,也未见兽类用以温暖空气的静脉丛,这和扬子鳄属外温动物而兽类为恒温动物密切相关。  相似文献   

7.
刺激源的方位是刺激的重要特性之一.行为学的研究发现,动物能够利用气味到达左右鼻腔的时间差和强度差信息对气味方位进行感知,但作为嗅觉系统第一神经中枢的嗅球,是否具有利用两侧鼻间差信息对气味方位进行编码的能力一直受到质疑.为探讨该问题,在本研究中通过比较嗅球中84个僧帽细胞对同侧气味刺激、对侧气味刺激以及对侧气味刺激略先于同侧气味刺激时的反应,发现有29个僧帽细胞可被同侧气味所兴奋,其中18个虽然对对侧气味刺激不反应,但对侧气味的存在却能显著降低其对同侧气味刺激的反应.另外,50个僧帽细胞在只给予同侧或对侧气味刺激时不反应,但其中11个在对侧刺激略先于同侧刺激的方式给出气味时,表现出明显的兴奋性反应.我们的研究结果一方面提示僧帽细胞具有编码气味到达两个鼻腔的时间差,或气味源位置信息的能力;另一方面也表明对侧刺激不仅能对同侧嗅球僧帽细胞产生抑制效应,还可能存在目前还不明确的机制而产生兴奋效应.  相似文献   

8.
果蝇嗅觉分子机理研究进展   总被引:2,自引:0,他引:2  
黑腹果蝇Drosophila melanogaster是生物学研究的重要模式生物,也是探索研究生物体嗅觉奥秘的理想材料。近年来,由于分子生物学技术在神经科学领域的广泛应用,黑腹果蝇嗅觉机理研究取得了许多重大突破, 对气味分子受体及其识别机理、 嗅觉神经电信号的产生和传递、嗅觉信息的加工、编码以及记忆等方面都有了深入的了解。研究表明, 果蝇约1 300个嗅神经元(olfactory receptor neurons, ORNs)共表达62种不同的气味受体蛋白(olfactory receptor proteins, ORs), 用以检测和识别其所感受的所有化学气味分子。许多OR所识别的气味分子配体已鉴定出来,普通的气味(如水果的气味)由数种不同的OR组合来识别,而信息素(pheromone)分子则由单种特定的OR来检测。气味信息在嗅神经元内转换成神经电信号,嗅觉电信号沿嗅神经元的轴突传递到触角叶, 再经投射神经元(projection neurons, PNs)将信息送至高级中枢如蘑菇体(mushroom body, MB)和侧角(lateral horn, LH),最终引发行为反应。在黑腹果蝇嗅觉信息传递通路中,某些蛋白如Dock,N-cadherin,Fruitless等起着重要作用,缺失这些蛋白会导致嗅觉异常。本文对这些研究进展作一综述。  相似文献   

9.
多斑岭鳅(Oreonectes polystigmus)是营洞穴生活的鱼类,嗅觉器官在其生活中发挥了重要作用。本文对保藏于中国科学院动物研究所鱼类标本馆的4尾多斑岭鳅标本进行解剖,利用扫描电镜观察多斑岭鳅嗅囊上皮超微结构,以期了解嗅觉器官适应洞穴黑暗环境而产生的形态适应。多斑岭鳅的嗅囊呈椭圆型,嗅囊长径平均为2.27 mm,嗅囊长径与眼径比平均为1.36,揭示其为"嗅觉"鱼类。其嗅轴为直线型,嗅囊腔内对称紧密排列2排嗅板,嗅板数为22~24个。单个嗅板呈卜状亚型,舌状突起较发达。观察发现,非感觉纤毛连续广布在嗅板各个部位,但在嗅板近嗅轴处较少,此处裸露的表皮多褶皱,其上分布很多细微小孔。感觉纤毛主要分布于非感觉纤毛分布较稀疏的地方。上皮表面微绒毛多,一般在非感觉纤毛下,前后两端嗅板上的微绒毛数量相对较少。多斑岭鳅嗅囊水动力机制应属嗅上皮纤毛运动机制。嗅孔分布不均,中间嗅板上的嗅孔较嗅轴前、后分布的嗅板为多,同一嗅板上近嗅轴处的嗅孔最多。由于纤毛分布不均,嗅上皮可分为裸露区和非裸露区,一般裸露区和非裸露区边界清晰,嗅轴上非感觉纤毛和微绒毛主要分布在非裸露区的凹槽里。嗅轴和嗅板近嗅轴处裸露区面积较大,嗅轴裸露区上皮被一系列的连续的微脊切割成多边形,多边形内具有许多隆起与小孔。嗅轴处正是嗅囊中水流回流的区域,为感受水中气味的重要位置,推测与洞穴生活的习性有密切关系。多斑岭鳅嗅囊形态属于G型,这类鱼类其嗅觉功能在鱼类生命活动中发挥了重要作用。同近缘的地表种相比,多斑岭鳅具有较多的嗅板数目、较多数量感觉纤毛和微绒毛,且其嗅囊长径与眼球径比值大于1,这些都揭示了其为"嗅觉"鱼类,表现出了对洞穴黑暗环境的适应。  相似文献   

10.
2004年度诺贝尔生理学和医学奖简介   总被引:2,自引:0,他引:2  
2004年诺贝尔生理学和医学奖颁发给两位美国科学家理查德·阿克塞尔(Richard Axel)和琳达·巴克(Linda Buck).他们发现嗅觉系统中一个大家族基因,这一大家族基因可以表达等量的嗅觉受体类型.这些受体位于鼻腔上皮的嗅觉神经元上,以检测不同的气味分子.  相似文献   

11.
哺乳动物的嗅觉系统能够察觉出空气中浓度低到一万亿分(1×10~(-12))之几的气味刺激。人类能在万种不同气味中辨别出某种化合物。一种气味被脑所察觉通过气味的识别和神经的作用两个过程。最初的气味信号传导发生在嗅觉神经上皮,而感觉信息的作用发生在嗅球和皮层高级中枢。  相似文献   

12.
中华须鳗嗅觉器官形态学观察   总被引:2,自引:1,他引:1  
利用光学显微镜和扫描电镜观察了10尾不同体长中华须鳗嗅觉器官的结构.结果表明:中华须鳗嗅囊呈楔型;嗅囊膜和嗅囊腹面的透明膜共同围成嗅囊腔;嗅囊长径与眼径的平均比值为2.2倍;每侧嗅囊嗅板数变化范围在30~44之间;嗅板远轴端有一纤毛和嗅孔密集的舌状游离突;嗅板上皮纤毛密集,纤毛细胞表现为3种类型:纤毛感觉细胞、纤毛非感觉细胞和微绒毛感觉细胞;纤毛非感觉细胞和微绒毛细胞也出现在嗅囊壁.嗅板上大量的纤毛表明,中华须鳗嗅囊的水动力机制应属嗅板纤毛搅动型(isosmates).除观察到嗅囊壁表面有两种类型的微嵴外,还首次在嗅板上观察到一种呈荸荠状的杆状细胞.  相似文献   

13.
哺乳动物主要嗅觉系统和犁鼻系统信息识别的编码模式   总被引:4,自引:0,他引:4  
哺乳动物具有两套嗅觉系统, 即主要嗅觉系统和犁鼻系统。前者对环境中的大多数挥发性化学物质进行识别, 后者对同种个体释放的信息素进行识别。本文从嗅觉感受器、嗅球、嗅球以上脑区三个水平综述了这两种嗅觉系统对化学信息识别的编码模式。犁鼻器用较窄的调谐识别信息素成分, 不同于嗅上皮用分类性合并受体的方式识别气味; 副嗅球以接受相同受体输入的肾丝球所在区域为单位整合信息, 而主嗅球通过对肾丝球模块的特异性合并编码信息; 在犁鼻系统, 信息素的信号更多地作用于下丘脑区域, 引起特定的行为和神经内分泌反应。而在主要嗅觉系统, 嗅皮层可能采用时间模式编码神经元群, 对气味的最终感受与脑的不同区域有关。犁鼻系统较主要嗅觉系统的编码简单, 可能与其执行的功能较少有关。  相似文献   

14.
嗅球(olfactory bulb,OB)是哺乳动物嗅觉感知的第一级中转站,但是OB不只是对嗅觉信息作简单的传递,嗅觉信息受OB内神经环路的动态调节,并转变为时空特异的神经活动信息后才传递给下一级嗅皮层。由于OB可以处理来自于不同气味受体的将近1 000个不同通道的信息输入,也接受了大量的离心输入,同时,还表达了多种激素的受体,因此,OB提供了一个研究神经网络在功能和发育上极为特异的理想模型。现综述了哺乳动物OB的细胞构筑、局部神经微环路、嗅球到不同嗅皮层的向心输入、嗅球接收来自于嗅皮层和脑干调制类的离心输入以及各条神经环路可能的功能和对气味感知的影响。  相似文献   

15.
大多数昆虫主要通过气味认知感知外界环境的变化,维持生命活动。探究昆虫气味认知的嗅觉系统神经结构及分子机制,对于完善气味认知神经生物学理论及利用其原理进行仿生学研究等有重要的科学意义。近年,关于昆虫气味认知科学研究有了很大的进展。本文从昆虫神经生物学的视角详细综述了近年关于昆虫气味认知的嗅觉神经结构、分子机制及气味信号的神经传导途径等方面的基本理论及最新研究成果。综述结果显示:昆虫对气味的认知是通过嗅觉神经系统的触角感器、触角叶(AL)、蕈形体(MB)等脑内多层信号处理神经结构来实现的。当外界气味分子进入触角感器内后,由感器内特定的气味识别蛋白(OBP)将气味分子运载到达嗅觉感受神经元(ORN)树突膜上的受体位点,气味分子与表达特定气味的受体(OR)结合产生电信号,并以动作电位的形式通过ORN的轴突传到脑内的触角叶。在触角叶经过嗅觉纤维球对气味信息选择性加工处理,再由投射神经元(PNs)将初步的识别和分类的气味信息传到蕈形体和外侧角(LH)等神经中枢,实现对气味的识别和认知。虽然,近年昆虫气味认知神经生物学的研究有了很大的进步,但是,我们认为目前的研究成果还不能完全阐明昆虫气味认知的神经机制,还有很多问题,例如,触角叶上众多的嗅觉纤维球是如何对嗅觉感受神经元传入的气味信息进行编码处理的?等有待进一步深入研究。为了搞清这些疑难问题,我们认为需要提高现有的实验技术水平,加强电生理学和分子神经生物学相结合的实验研究,从分子水平探究气味认知的神经机制可能是未来研究的热点。  相似文献   

16.
陈明  彭作刚  何舜平 《中国科学C辑》2009,39(11):1057-1068
嗅觉是动物至关重要的感官,而嗅觉受体基因则构成了嗅觉的基础.嗅觉受体跟环境气味分子的相互作用被认为是嗅觉过程发生的第一步.气味分子结合被认为发生在由跨膜区形成的一个口袋结构中,而直接结合位点叫做绑定位点.以往的研究显示,绑定位点可能因为功能分化而受到正向选择.本研究对青鳉和三刺鱼的基因组中鉴定了OR基因,并对这些序列进行了进化分析.通过不同跨膜区与整个编码区的选择压力的比较,发现跨膜区4,5,6有较高的平均Ka/Ks值,这可能在某种程度上由正向选择所致.同时发现,许多受正向选择的位点主要分布在跨膜区.通过进一步分析发现,许多PTSs与哺乳类中推测的绑定位点重叠或邻近.有趣的是,正向选择发生在3个物种特异的分支中.对于三刺鱼中的嗅觉受体基因来说,它们的进化模式似乎遵循一种"适应辐射模型",因为正向选择发生在两个新近扩张的分支中.这些结果均支持鱼类嗅觉受体基因在进化中受到正向选择的假说.  相似文献   

17.
嗅上皮接收和传导气味信号是嗅觉系统的重要组成部分。嗅上皮的损伤在通常情况下可自发恢复,但特定疾病或衰老造成的嗅上皮损伤会引起嗅觉功能减退和嗅觉障碍。嗅上皮主要由基底细胞、支持细胞以及嗅感觉神经元组成。为了在体外建立包含多种细胞类型的嗅上皮类器官,本研究采用3D细胞培养技术,通过筛选小分子药物,构建了包含多种细胞类型的嗅上皮类器官模型,包含水平基底样细胞、球形基底样细胞、支持样细胞和嗅感觉神经元样细胞多种细胞类型。类器官培养体系中多种生长因子和小分子化合物在细胞增殖速度、细胞组成以及不同细胞类型标志基因的表达水平等方面对类器官产生影响。Wnt信号通路激活剂CHIR-99021能够提高嗅上皮类器官的成克隆率和增殖速度且有利于提高嗅上皮类器官中嗅感觉神经元样细胞标志基因的表达水平;培养体系的任一因子均能提高类器官中cKit阳性的球形基底样细胞克隆比例;表皮生长因子(epidermal growth factor,EGF)和维生素C均有利于类器官中水平基底样细胞标志基因的表达。本研究建立的嗅上皮类器官系统模拟了嗅上皮干细胞分化产生多种嗅上皮细胞类型的过程,为研究嗅上皮组织损伤再生、嗅觉障碍病理...  相似文献   

18.
韩国科学家的最新研究发现 ,一种由乙肝病毒生成的蛋白质 ,是导致乙肝在发展过程中发生癌变的原因。由韩国东国大学教授金铁虎率领的科研小组近日指出 ,p5 3蛋白质可以抑制癌变 ,但他们的研究表明 ,由乙肝病毒生成的 4种蛋白质之一 x型蛋白质 (HBx)与p5 3蛋白质结合在一起时 ,会抑制 p5 3蛋白质的活动 ,特别是它能切断 p5 3蛋白质向抑制肝癌生成的 PTEN基因发出的信息 ,使 PTEN活动萎缩 ,最终发生癌变。金铁虎教授说 ,迄今有科学家通过对细胞的研究搞清了乙肝生成的过程 ,但他们的研究成果首次在分子层面发现肝癌的原因。韩国科学家发现…  相似文献   

19.
二维不定常嗅觉模型及其精确解   总被引:4,自引:1,他引:3  
在考虑了鼻腔结构的基础上,把嗅觉反应的主要机理分成四个连续的主要过程,建立了二维不定常的嗅觉模型,利用分离变量法得到了该模型的精确解,并给出了两个无量纲参数影响气味分子在粘膜层内分布的计算结果,精确解则揭示了各生理参数之间的内在联系。理论和数值结果表明:吸气速度和嗅粘膜表面的粘液是影响嗅觉反应的两个重要因素。这些结果对进一步研究嗅觉反应机理具有一定的参考价值  相似文献   

20.
昆虫气味受体研究进展   总被引:3,自引:0,他引:3  
嗅觉在昆虫的多种行为中发挥关键作用。气味分子与嗅觉神经元树突上气味受体的结合,参与了昆虫嗅觉识别的初始过程。昆虫的嗅觉神经元表达两类气味受体: 一是传统气味受体,该类受体同源性较低,在少部分嗅觉神经元中表达; 二是Or83b家族受体,该类受体不感受气味,在不同昆虫间较为保守且在大多数嗅觉神经元中表达。目前,对于单个传统气味受体的气味分子配体特异性所知甚少; 对于Or83b家族受体,一般认为其可能具有将传统气味受体运送至嗅觉神经元树突膜上的功能。此外,有一些实验证据不支持昆虫气味受体为G蛋白偶联受体的观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号