首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We studied the influence of exogenously generated superoxide and exogenous 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the Acanthamoeba castellanii uncoupling protein (AcUCP). The superoxide-generating xanthine/xanthine oxidase system was insufficient to induce mitochondrial uncoupling. In contrast, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. In non-phosphorylating mitochondria, AcUCP activation by HNE was demonstrated by increased oxygen consumption accompanied by a decreased membrane potential and ubiquinone (Q) reduction level. The HNE-induced GTP-sensitive proton conductance was similar to that observed with linoleic acid. In phosphorylating mitochondria, the HNE-induced AcUCP-mediated uncoupling decreased the yield of oxidative phosphorylation. We demonstrated that the efficiency of GTP to inhibit HNE-induced AcUCP-mediated uncoupling was regulated by the endogenous Q redox state. A high Q reduction level activated AcUCP by relieving the inhibition caused by GTP while a low Q reduction level favoured the inhibition. We propose that the regulation of UCP activity involves a rapid response through the endogenous Q redox state that modulates the inhibition of UCP by purine nucleotides, followed by a late response through lipid peroxidation products resulting from an increase in the formation of reactive oxygen species that modulate the UCP activation.  相似文献   

2.
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.  相似文献   

3.
The stomata in the abaxial epidermis of Vicia faba were examined for the location of redox systems using tetrazolium salts. Three distinct redox systems could be demonstrated: chloroplast, mitochondrial, and plasmalemma. The chloroplast activity required light and NADP. Mitochondrial activity required added NADH and was suppressed by preincubation with KCN. The plasmalemma redox system in guard cells also required NADH, but was insensitive to KCN and was stimulated by blue light. The involvement of an NADH dehydrogenase in the blue light stimulated redox system in guard cells was suggested by the sensitivity to plantanetin, an inhibitor of NADH dehydrogenase. The redox system of mitochondria was the most active followed by that of plasmalemma. The activity of chloroplasts was the least among the three redox systems. The plasmalemma mediated tetrazolium reduction was stimulated by exogenous flavins and suppressed by Kl or phenylacetate, inhibitors of flavin excitation. We therefore conclude that an NADH-dependent, flavin mediated electron transport system, sensitive to blue light, operates in the plasmalemma of guard cells.  相似文献   

4.
Plasma membrane flavins and pterins are considered to mediate important physiological functions such as blue light photoperception and redox activity. Therefore, the presence of flavins and pterins in the plasma membrane of higher plants was studied together with NAD(P)H-dependent redox activities. Plasma membranes were isolated from the apical hooks of etiolated bean seedlings (Phaseolus vulgaris L. cv. Limburgse Vroege) by aqueous two-phase partitioning. Fluorescence spectroscopy revealed the presence of two chromophores. The first showed excitation maxima at 370 and 460 nm and an emission peak at 520 nm and was identified as a flavin. The second chromophore was probably a pterin molecule with excitation peaks at 290 and 350 nm and emission at 440 nm. Both pigments are considered intrinsic to the plasma membrane since they could not be removed by treatment with hypotonic media containing high salt and low detergent concentrations. The flavin concentration was estimated at about 500 pmol mg?1 protein. However difficulties were encountered in quantifying the pterin concentrations. Protease treatments indicated that the flavins were non-covalently bound to the proteins. Separation of the plasma membrane proteins after solubilisation by octylglucoside, on an ion exchange system (HPLC, Mono Q), resulted in a distinct protein fraction showing flavin and pterin fluorescence and NADH oxidoreductase activity. The flavin of this fraction was identified as flavin mononucleotide (FMN) by HPLC analysis. Other minor peaks of NADH:acceptor reductase activity were resolved on the column. The presence of distinct NAD(P)H oxidases at the plasma membrane was supported by nucleotide specificity and latency studies using intact vesicles. Our work demonstrates the presence of plasma membrane flavins as intrinsic chromophores, that may function in NAD(P)H-oxidoreductase activity and suggests the presence of plasma membrane bound pterins.  相似文献   

5.
1. Retinol and stilbene are both isomerized when they are illuminated anaerobically in the presence of flavins. 2. Triplet quenchers (e.g. oxygen, potassium iodide and paramagnetic ions) inhibit the reaction more efficiently than they quench flavin fluorescence. At 77 degrees C in a diethyl ether-isopentane-ethanol (5:5:2) glass retinol quenches flavin phosphorescence, but not its fluorescence. 3. For the stilbene reaction cis/trans photostationary-state mixtures are obtained with different flavins and these are linearly related to the phosphorescence transition energies of the flavins used. 4. The reaction involves the triplet state of flavin and a scheme for the reaction is suggested. 5. The dependence of the rate of reaction on substrate concentration is explicable in terms of this scheme. 6. The photobleaching of rhodopsin sensitized by flavin is also demonstrated.  相似文献   

6.
The singlet and triplet excited states properties of lumiflavin (LF), riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) in reversed micelles (RM) of sodium docusate (AOT) in n-hexane solutions were evaluated as a function of the water to surfactant molar ratio, w(0) = [H(2)O]/[AOT], by both steady-state and time-resolved absorption and fluorescence spectroscopy. The results indicated that hydrogen-bonding interactions between the isoalloxazine ring of the flavins with the water molecules of the micellar interior play a crucial role on the modulation of the excited state properties of the flavins. Fluorescence dynamic experiments in the RM, allowed the calculation of similar values for both the internal rotational time of the flavins (θ(i)) and the hydrogen-bonding relaxation time (τ(HB)), e.g.≈ 7 and 1.5 ns at w(0) = 1 and 20, respectively. In turn, the triplet state lifetimes of the flavins were also enlarged in RM solutions at low w(0), without modifications of their quantum yields. A hydrogen bonding relaxation model is proposed to explain the singlet excited state properties of the flavins, while the changes of the triplet state decays of the flavins were related with the global composition and strength of the hydrogen bonding network inside of the RM.  相似文献   

7.
Native FAD was removed from chicken liver xanthine dehydrogenase (XDH) and replaced with a number of artificial flavins of different redox potential. Dithionite titration of the 2-thio-FAD- or 4-thio-FAD (high potential)-containing enzymes showed that the first center to be reduced was the flavin. With native enzyme, iron-sulfur centers are the first to be reduced. With the low potential flavin, 6-OH-FAD, the enzyme-bound flavin was the last center to be reduced in reductive titration with xanthine. These shifts in the reduction profile support the hypothesis that the distribution of reducing equivalents in multi-center oxidation-reduction enzymes of this type is determined by the relative potentials of the centers. The reaction of molecular oxygen with fully reduced 2-thio-FAD XDH or 4-thio-FAD XDH resulted in 5 electron eq being released in a fast phase and one in a slow phase. Reduction of these enzymes by xanthine was limited at a rate comparable to that for the release of urate from native XDH. Xanthine/O2 turnover with these enzymes (and native XDH) resulted in approximately 40-50% of the xanthine reducing equivalents appearing as superoxide. Steady state turnover experiments involving all modified flavin-containing enzymes, as well as native enzyme, showed that shifting the flavin potential either positive or negative relative to FAD caused a decrease in catalytic activity in the xanthine/NAD reductase reaction. In the case of the xanthine/O2 reductase activity, there is no simple obvious relationship between the activity and the redox potential of the reconstituted flavin.  相似文献   

8.
Redox titration of all optically detectable prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) at pH 7.5 showed that the functionally active enzyme possesses only three titratable flavin cofactors, one noncovalently bound FAD and two covalently bound FMN residues. All three flavins undergo different redox transitions during the function of the enzyme. The noncovalently bound FAD works as a "classical" two-electron carrier with a midpoint potential (E(m)) of -200 mV. Each of the FMN residues is capable of only one-electron reduction: one from neutral flavosemiquinone to fully reduced flavin (E(m) = 20 mV) and the other from oxidized flavin to flavosemiquinone anion (E(m) = -150 mV). The lacking second half of the redox transitions for the FMNs cannot be reached under our experimental conditions and is most likely not employed in the catalytic cycle. Besides the flavins, a [2Fe-2S] cluster was shown to function in the enzyme as a one-electron carrier with an E(m) of -270 mV. The midpoint potentials of all the redox transitions determined in the enzyme were found to be independent of Na(+) concentration. Even the components that exhibit very strong retardation in the rate of their reduction by NADH at low sodium concentrations experienced no change in the E(m) values when the concentration of the coupling ion was changed 1000 times. On the basis of these data, plausible mechanisms for the translocation of transmembrane sodium ions by Na(+)-NQR are discussed.  相似文献   

9.
W S Kunz 《FEBS letters》1986,195(1-2):92-96
The different flavoproteins contributing to flavin fluorescence of isolated rat liver mitochondria have distinct excitation and emission spectra. The NAD-linked flavin component was identified as alpha-lipoamide dehydrogenase, while the non-NAD-linked component was found to be electron transfer flavoprotein. The differences in excitation and emission properties of the mitochondrial flavoproteins permit selective recording of their redox state changes in isolated mitochondria.  相似文献   

10.
Isaias Lans  Susana Frago  Milagros Medina 《BBA》2012,1817(12):2118-2127
The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1′-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP+ reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58.  相似文献   

11.
Recent studies suggest that intercellular transport via plasmodesmata (PD) is regulated by cellular redox state. Until now, this relationship has been unclear, as increased production of reactive oxygen species (ROS) has been associated with both increased and decreased intercellular transport via PD. Here, we show that silencing two genes that both increase transport via PD, INCREASED SIZE EXCLUSION LIMIT1 (ISE1) and ISE2, alters organelle redox state. Using redox-sensitive green fluorescent proteins targeted to the mitochondria or plastids, we show that, relative to wild-type leaves, plastids are more reduced in both ISE1- and ISE2-silenced leaves, whereas mitochondria are more oxidized in ISE1-silenced leaves. We further show that PD transport is positively regulated by ROS production in mitochondria following treatment with salicylhydroxamic acid but negatively regulated by an oxidative shift in both chloroplasts and mitochondria following treatment with paraquat. Thus, oxidative shifts in the mitochondrial redox state positively regulate intercellular transport in leaves, but oxidative shifts in the plastid redox state counteract this effect and negatively regulate intercellular transport. This proposed model reconciles previous contradictory evidence relating ROS production to PD transport and supports accumulating evidence that mitochondria and plastids are crucial regulators of PD function.  相似文献   

12.
Under F1-ATPase irradiation by visible light two characteristic features of flavin main activities were detected: I/ESR signal g = 2.00 appearance which was in favor of flavin photochemical electron reduction and 2/photostimulated O2 consumption by F1-ATPase. The dependence of ESR signal g = 2.00 intensity on visible light wavelength completely coincided with the same dependence obtained for proteinless model riboflavin + ADP. Flavin localization in proximity of ADP bound in the enzyme active site was suggested. Under F1-ATPase irradiation by light lambda greater than 350 nm ATP synthesis was obtained similar to the proteinless model riboflavin + ADP + Pinorg. In this model endogenous flavin was suggested to serve as a photosensitizer, its photoexcitement being a model of dark energization of F1-ATPase in oxidative phosphorylation.  相似文献   

13.
The effect of fluorocitrate on oxidative reactions and energy production systems of rat liver mitochondria has been studied. It was shown that oxidation of endogenous substrates and malate with pyruvate as well as the phosphorylation of the added ADP were inhibited by fluorocitrate. Inhibition of oxygen consumption by fluorocitrate induced the efflux of Ca2+ ions from mitochondria and a decrease in the Ca(2+)-accumulating capacity. The effect of fluorocitrate on Ca2+ transport in mitochondria is due to activation of the Ca-efflux pathway in those sensitive to ruthenium red.  相似文献   

14.
《BBA》2020,1861(8):148210
An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.  相似文献   

15.
The effects of N-substituted tricyanovinylamines on oxidative phosphorylation as well as on glutathione and total SH group concentrations in rat liver mitochondria was studied. The N-TCVA derivatives studied (N-cyclohexyl; N-isobutyl; N-benzyl; N-phenyl; N-4-Br-phenyl; N-3-nitrophenyl) had an uncoupling effection on the oxidative phosphorylation. They stimulated the respiration of mitochondria and influenced their membrane potential. In their property as SH agents, the N-TCVA derivatives reduced the level of TSH groups of the mitochondria present in concentrations of 2 mumol/mg protein. The activity of succinate dehydrogenase was decreased by N-TCVA by 13%. N-TCVA derivatives changed the redox state of glutathione in mitochondria. This effect was observed at the concentration 0.3 mumol/mg protein. The results obtained in the present study support the view that the glutathione status is more sensitive than the total level of SH groups to incubation of mitochondria with SH agents such as N-TCVA derivatives.  相似文献   

16.
Mitochondria, in addition to energy transformation, play a role in important metabolic tasks such as apoptosis, cellular proliferation, heme/steroid synthesis as well as in the cellular redox state regulation. The mitochondrial phosphorylation process is very efficient, but a small percentage of electrons may prematurely reduce oxygen forming toxic free radicals potentially impairing the mitochondria function. Furthermore, under certain conditions, protons can reenter the mitochondrial matrix through different uncoupling proteins (UCPs), affecting the control of free radicals production by mitochondria. Disorders of the mitochondrial electron transport chain, overgeneration of reactive oxygen species (ROS) and lipoperoxides or impairments in antioxidant defenses have been reported in situations of obesity and type-2 diabetes. On the other hand, obesity has been associated to a low degree pro-inflammatory state, in which impairments in the oxidative stress and antioxidant mechanism could be involved. Indeed, reactive oxygen species have been attributed a causal role in multiple forms of insulin resistance. The scientific evidence highlights the importance of investigating the relationships between oxidative stress and inflammation with obesity/diabetes onset and underlines the need to study in mitochondria from different tissues, the interactions of such factors either as a cause or consequence of obesity and insulin resistance.  相似文献   

17.
Mitochondria are key regulators of cellular energy and redox metabolism, also playing a central role in cell signaling and death pathways. A number of processes occur within mitochondria, including redox-dependent ATP synthesis by oxidative phosphorylation and reactive oxygen species production. Mitochondrial permeability transition is a reversible process that may lead to cell death and is regulated by calcium and reactive oxygen species. Functional mitochondria are present in platelets, and evidence has demonstrated the direct involvement of these organelles in cellular ATP production, redox balance, as well as in platelet activation and apoptosis. Here, we review aspects of platelet physiology in which mitochondria are involved, as well as assess their function as new tools for studying a number of human diseases.  相似文献   

18.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


19.
The mathematical dynamic model of oxidative phosphorylation in muscle mitochondria developed previously was used to calculate the flux control coefficients of particular steps of this process in isolated mitochondria at different amounts of hexokinase and oxygen concentrations. The pattern of control was completely different under different conditions. For normoxic concentration, the main controlling steps in state 4, state 3.5 and state 3 were proton leak, ATP usage (hexokinase) and complex III, respectively. The pattern of control in state 4 was not changed at hypoxic oxygen concentration, while in state 3.5 and state 3 much of the control was shifted from other steps to cytochrome oxidase. The implications of the theoretical results obtained for the regulation of oxidative phosphorylation in intact muscle are discussed.  相似文献   

20.
Mitochondria play a central and multifaceted role in the mammalian egg and early embryo, contributing to many different aspects of early development. While the contribution of mitochondria to energy production is fundamental, other roles for mitochondria are starting to emerge. Mitochondria are central to intracellular redox metabolism as they produce reactive oxygen species (ROS, the mediators of oxidative stress) and they can generate TCA cycle intermediates and reducing equivalents that are used in antioxidant defence. A high cytosolic lactate dehydrogenase activity coupled with dynamic levels of cytosolic pyruvate is responsible for a very dynamic intracellular redox state in the oocyte and embryo. Mammalian embryos have a low glucose metabolism during the earliest stages of development, as both glycolysis and the pentose phosphate pathway are suppressed. The mitochondrial TCA cycle is therefore the major source of reducing equivalents in the cytosol so that any change in mitochondrial function in the embryo will be reflected in changes in the intracellular redox state. In the mouse, the metabolic substrates used by the oocyte and early embryo each have a different impact on the intracellular redox state. Pyruvate which oxidises the cytosolic redox state, acts as an energetic and redox substrate whereas lactate, which reduces the cytosolic redox state, acts only as a redox substrate. Mammalian early embryos are very sensitive to oxidative stress which can cause permanent developmental arrest before zygotic genome activation and apoptosis in the blastocyst. The oocyte stockpiles antioxidant defence for the early embryo to cope with exogenous and endogenous oxidant insults arising during early development. Mitochondria provide ATP for glutathione (GSH) production during oocyte maturation and also participate in the regeneration of NADPH and GSH during early development. Finally, a number of pathological conditions or environmental insults impair early development by altering mitochondrial function, illustrating the centrality of mitochondrial function in embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号