首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-sensitive mutations at 15 loci that affect the fidelity of mitotic chromosome behavior have been isolated in Drosophila melanogaster. These mitotic mutants were detected in a collection of 168 EMS-induced X-linked temperature-sensitive (ts) lethal and semilethal mutants. Our screen for mutations with mitotic effects was based upon the reasoning that under semirestrictive conditions such mutations could cause an elevated frequency of mitotic chromosome misbehavior and that such events would be detectable with somatic cell genetic techniques. Males hemizygous for each ts lethal and heterozygous for the recessive autosomal cell marker mwh were reared under semirestrictive conditions, and the wings of those individuals surviving to adulthood were examined for an increased frequency of mwh clones. Those mutations producing elevated levels of chromosome instability during growth of the wing imaginal disc were also examined for their effects on chromosome behavior in the cell lineages producing the abdominal cuticle. Fifteen mutations affect chromosome behavior in both wing and abdominal cells and thus identify loci generally required for the fidelity of mitotic chromosome transmission. Mapping and complementation tests show that these mutations represent 15 loci. One mutant is an allele of a locus (mus-101) previously identified by mutagen-sensitive mutants and a second mutant is an allele of the lethal locus zw 10.--The 15 mutants were also examined cytologically for their effects on chromosomes in larval neuroblasts. Taken together, the results of our cytological and genetical studies show that these mutants identify loci with wild-type functions necessary for either maintenance of chromosome integrity or regular disjunction of chromosomes or chromosome condensation. Thus, these mutations define a broad spectrum of genes required for the normal execution of the mitotic chromosome cycle.  相似文献   

2.
Baker BS  Carpenter AT  Ripoll P 《Genetics》1978,90(3):531-578
To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts are in a nondividing (G2) state.—Mitotic recombination is at or above control levels in the presence of each of the recombination-defective meiotic mutants examined, suggesting that meiotic and mitotic recombination are under separate genetic control in Drosophila.—Of the six mutants examined that are defective in processes required for regular meiotic chromosome segregation, four (l(1)TW-6cs, cand, mei-S332, ord) affect mitotic chromosome behavior. At semi-restrictive temperatures, the cold sensitive lethal l(1)TW-6cs causes very frequent somatic spots, a substantial proportion of which are attributable to nondisjunction or loss. Thus, this locus specifies a function essential for chromosome segregation at mitosis as well as at the first meiotic division in females. The patterns of mitotic effects caused by cand, mei-S332, and ord suggest that they may be leaky alleles at essential loci that specify functions common to meiosis and mitosis. Mutants at the two remaining loci (nod, pal) do not affect mitotic chromosome stability.  相似文献   

3.
Thirteen X-linked mutants have been isolated in Drosophila melanogaster which render male and homozygous female larvae sensitive to the mutagen methyl methanesulfonate. Their characterization and preliminary assignment to functional groups is described. Four of these mutants are alleles of mei-41 (Baker and Carpenter 1972). Like previously isolated alleles of this locus, these mutants reduce fertility and increase loss and nondisjunction of the X-chromosome in homozygous females. The remaining mutants have been tentatively assigned to six functional groups (two mutants to the mus(1)101 locus, two to mus(1)102 , two to mus(1)103, and one each to mus(1)104, mus(1)105 , and mus(1)106). Several of the complementation groups can be distinguished on the basis of nondisjunction and cross sensitivity to mutagens. Females homozygous for the mei-41, mus(1)101 and mus(1)102 mutants exhibit elevated levels of nondisjunction. Mutants belonging to complementation groups mei-41, mus(1)101, and mus(1)104 are sensitive to nitrogen mustard (HN2) in addition to their MMS sensitivity. Among these mutants there is currently a direct correlation between sensitivity to HN2, sensitivity to 2-acetylaminofluorene and a deficiency in post-replication repair ( Boyd and Setlow 1976). Only the mei-41 mutants are hypersensitive to UV radiation, although several of the mutants exhibit sensitivity to gamma-rays. Semidominance is observed in female larvae of the mei-41, mus(1)104, and mus(1)103 mutants after exposure to high concentrations of MMS. The properties of the mutants generally conform to a pattern which has been established for related mutants in yeast. Additional properties of these mutants are summarized in Table 9.  相似文献   

4.
7 mus (mutagen-sensitive) mutants of Neurospora crassa, which are more sensitive to the toxic effects of MMS (methyl methanesulfonate) than wild-type, were investigated for cross-sensitivities to other mutagens and inhibitors. These mutants have recently been mapped in 5 new genes, mus-7 to mus-11, and mutant alleles from each gene were checked for their effects on mutation frequencies. It was found that mutants in 3 of these 5 genes showed radiation-induced mutation frequencies similar to wild-type. These included 2 alleles of the gene mus-10, which were cross-sensitive only to UV and were the only mutants that produced some viable ascospores in homozygous crosses. The mutant of the second gene, mus-8, was especially sensitive to UV and mitomycin C and produced slightly reduced frequencies of spontaneous mutation. In contrast, the mutant of the third gene, mus-7, was not UV-sensitive but showed some cross-sensitivity to X-rays; mus-7 was highly sensitive to MMS and also to histidine, which inhibits various repair-defective mutants at concentrations well below those that reduce wild-type growth. None of these mus resemble mutants previously found in Neurospora, nor do they conform clearly to mutant types identified in E. coli or yeast. On the other hand mutants in 2 further genes, mus-11, and especially 2 alleles of mus-9, are very similar to uvs-3 of Neurospora and generally resemble mutants that are considered to be defective in "error-prone" repair. They were UV- as well as X-ray-sensitive, and showed strong spontaneous mutator effects but almost no increase in recessive lethal frequencies in heterokaryons after UV-treatments.  相似文献   

5.
Mutants at 2 new loci which control mutagen-sensitivity are described. Mutants at both loci are female-sterile and are hypersensitive to killing by MMS; neither increases the frequency of sex-linked recessive lethals. A screen of previously described female-sterile and meotic mutants has revealed that a number of these are also sensitive to mutagens. In addition, several new mutants have been identified on the basis of sensitivity to either HN2 or MMS. An anlysis of complementation data suggests that all of the X-linked genes controlling sensitivity to MMS may now have been identified. Among the new mei-41 alleles are mutants which show verly little meiotic nondisjunction or loss. Cytogenetic mapping of previously known mutants is also described. The mutants mus(1)104D1 and mei-41D5 are located in th eregion 14B13±?14D1,2 on the polytene chromosome map, and they map very close to each other genetically. Cytogenetically mus(1)101D1 is between salivary chromosome bands 12A6,7 and 12D3, mus(1)103D1 is between bands 12A1,2 and 12A6,7, and mus(1)-109A1 is in section 8F3-9A2.  相似文献   

6.
Four triazine herbicides: amitrole, metribuzin, prometryn and terbutryn, and the bipyridal compound diquat dibromide have been evaluated for genotoxicity in the wing somatic mutation and recombination test of Drosophila melanogaster, following standard procedures. Third-instar larvae trans-heterozygous for the third chromosome recessive markers multiple wing hairs (mwh) and flare-3 (flr(3)) were chronically fed with different concentrations of the test compounds. Feeding ended with pupation of the surviving larvae. Genetic changes induced in somatic cells of the wing's imaginal discs lead to the formation of mutant clones on the wing blade. Point mutation, chromosome breakage and mitotic recombination produce single spots; while twin spots are produced only by mitotic recombination. Exposure to 0.5 mM and 1 mM of amitrole clearly increased the frequency of small single, large single and total spots. Terbutryn, at the concentration of 5 mM, induced a slight increase in the frequency of small single and total spots, but this result could be false positive. The other three herbicides tested did not show any genotoxic effect. When heterozygous larvae for mwh and the multiple inverted TM3 balancer chromosomes were treated, significant increases in the frequency of mutant spots were only detected for amitrole. The observed spot frequencies were lower than those found in mwh/flr(3)50%) of the total spot induction was due to mitotic recombination.  相似文献   

7.
A. Ferrus 《Genetics》1975,79(4):589-599
A sample of 16 Minutes, representing 12 loci distributed over all the chromosome arms and including 3 pairs of alleles and 4 deficiencies, has been studied with respect to several developmental and recombinational parameters. Cell marker mutants located in most of the chromosome arms were used to assess (1) spontaneous and X-ray-induced mitotic recombination frequencies of each Minute, and (2) clone sizes of the different cell marker clones. These parameters were analyzed both in the wing disc and in the abdominal histoblasts.—Whereas spontaneous frequencies are not affected by the presence of the Minutes studied, the different Minutes characteristically increase the frequency of recombination clones arising after X-irradiation. The recombinant clones which are M+/M+ are significantly larger than clones in the same fly which retain the M+/M condition. This is particularly striking in clones in the wing disc, slightly so in clones in the tergites. The occurrence of mitotic recombination in the fourth chromosome is reported for the first time.—Chaeta length and developmental delay correlates with the recombinational parameters in different ways. Possible causal interrelationships of the different traits of the Minute syndrome are discussed.  相似文献   

8.
This study evaluated different concentrations of selective serotonin-reuptake inhibitors (citalopram and sertraline) for genotoxicity by use of the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Three-day-old larvae, trans-heterozygous for the multiple wing hairs (mwh) and flare (flr3) genes were treated with these two compounds. Two recessive markers were located on the left arm of chromosome 3, i.e. 'multiple wing hairs' (mwh) in map position 0.3 and 'flare-3' (flr3) at 38.8, while the centromere was located in position 47.7. SMART is based on the loss of heterozygosity, which may occur through various mechanisms, such as mitotic recombination, mutation, deletion, half-translocation, chromosome loss, and non-disjunction. Genetic changes occurring in somatic cells of the wing's imaginal discs, cause the formation of mutant clones on the wing blade. The results of this study show that citalopram had a genotoxic effect in the Drosophila SMART. Sertraline, however, did not show any genotoxic effect in balancer heterozygous wings. This study concluded that more information is needed to be certain regarding the mutagenic effects of sertraline.  相似文献   

9.
E P Walsh  N H Brown 《Genetics》1998,150(2):791-805
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function.  相似文献   

10.
The mutagen-sensitive-101 (mus101) gene of Drosophila melanogaster was first identified 25 years ago through mutations conferring larval hypersensitivity to DNA-damaging agents. Other alleles of mus101 causing different phenotypes were later isolated: a female sterile allele results in a defect in a tissue-specific form of DNA synthesis (chorion gene amplification) and lethal alleles cause mitotic chromosome instability that can be observed genetically and cytologically. The latter phenotype presents as a striking failure of mitotic chromosomes of larval neuroblasts to undergo condensation of pericentric heterochromatic regions, as we show for a newly described mutant carrying lethal allele mus101(lcd). To gain further insight into the function of the Mus101 protein we have molecularly cloned the gene using a positional cloning strategy. We report here that mus101 encodes a member of the BRCT (BRCA1 C terminus) domain superfamily of proteins implicated in DNA repair and cell cycle checkpoint control. Mus101, which contains seven BRCT domains distributed throughout its length, is most similar to human TopBP1, a protein identified through its in vitro association with DNA topoisomerase IIbeta. Mus101 also shares sequence similarity with the fission yeast Rad4/Cut5 protein required for repair, replication, and checkpoint control, suggesting that the two proteins may be functional homologs.  相似文献   

11.
Holway AH  Hung C  Michael WM 《Genetics》2005,169(3):1451-1460
The Mus101 family of chromosomal proteins, identified initially in Drosophila, is widely conserved and has been shown to function in a variety of DNA metabolic processes. Such functions include DNA replication, DNA damage repair, postreplication repair, damage checkpoint activation, chromosome stability, and chromosome condensation. Despite its conservation and widespread involvement in chromosome biogenesis, very little is known about how Mus101 is regulated and what other proteins are required for Mus101 to exert its functions. To learn more about Mus101, we have initiated an analysis of the protein in C. elegans. Here, we show that C. elegans mus-101 is an essential gene, that it is required for DNA replication, and that it also plays an important role in the DNA damage response. Furthermore, we use RNA interference (RNAi)-mediated reverse genetics to screen for genes that modify a mus-101 partial loss-of-function RNAi phenotype. Using a systematic approach toward modifier gene discovery, we have found five chromosome I genes that modify the mus-101 RNAi phenotype, and we go on to show that one of them encodes an E3 SUMO ligase that promotes SUMO modification of MUS-101 in vitro. These results expand our understanding of MUS-101 regulation and show that genetic interactions can be uncovered using screening strategies that rely solely on RNAi.  相似文献   

12.
McVey M  Andersen SL  Broze Y  Sekelsky J 《Genetics》2007,176(4):1979-1992
Bloom Syndrome, a rare human disorder characterized by genomic instability and predisposition to cancer, is caused by mutation of BLM, which encodes a RecQ-family DNA helicase. The Drosophila melanogaster ortholog of BLM, DmBlm, is encoded by mus309. Mutations in mus309 cause hypersensitivity to DNA-damaging agents, female sterility, and defects in repairing double-strand breaks (DSBs). To better understand these phenotypes, we isolated novel mus309 alleles. Mutations that delete the N terminus of DmBlm, but not the helicase domain, have DSB repair defects as severe as those caused by null mutations. We found that female sterility is due to a requirement for DmBlm in early embryonic cell cycles; embryos lacking maternally derived DmBlm have anaphase bridges and other mitotic defects. These defects were less severe for the N-terminal deletion alleles, so we used one of these mutations to assay meiotic recombination. Crossovers were decreased to about half the normal rate, and the remaining crossovers were evenly distributed along the chromosome. We also found that spontaneous mitotic crossovers are increased by several orders of magnitude in mus309 mutants. These results demonstrate that DmBlm functions in multiple cellular contexts to promote genome stability.  相似文献   

13.
E K?fer  D Luk 《Mutation research》1989,217(1):75-81
Mutations were induced in Neurospora which cause increased sensitivity to MMS (methyl methane-sulfonate) and other mutagens. Genetic analysis of such mus demonstrated that some of them defined new DNA repair genes (mus-21, and mus-27 to mus-30), while others represented new alleles in previously known genes. To characterize them further, and especially to identify rec- types which have not yet been found in this species, many MMS-sensitive strains were tested for cross-sensitivities to bleomycin (BLM) and to hydrogen peroxide (H2O2) to which some rec- of other species are hypersensitive. In Neurospora, many of the MMS-sensitive mutants were found to be cross-sensitive to BLM and frequently these were also hypersensitive to ionizing radiation. Bleomycin sensitivity was demonstrated for all alleles of 10 different genes, 4 of them new ones, with mus-27 being the most sensitive of the latter (resembling uvs-6; Koga and Schroeder, 1987, Mutation Res., 183, 139). In contrast, very few of the MMS-sensitive mutants were hypersensitive to H2O2 and, in general, results of H2O2 tests were variable and differences between strains small. However, consistent deviations from wild type were observed in a few cases (most clearly for mus-9 and mus-11) when results from treatments of germinating conidia were compared with those of non-growing ones.  相似文献   

14.
P. Zhao  E. Kafer 《Genetics》1992,130(4):717-728
Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.  相似文献   

15.
T. Ayaki  K. Fujikawa  H. Ryo  T. Itoh    S. Kondo 《Genetics》1990,126(1):157-166
As a model for chromosome aberrations, radiation-induced mitotic recombination of mwh and flr genes in Drosophila melanogaster strain (mwh +/+ flr) was quantitatively studied. Fission neutrons were five to six times more effective than X rays per unit dose in producing either crossover-mwh/flr twins and mwh singles-or flr singles, indicating that common processes are involved in the production of crossover and flr singles. The X-ray-induced rate/wing anlage cell/Gy for flr singles was 1 X 10(-5), whereas that of crossover was 2 x 10(-4); the former and the latter rate are of the same order of magnitude as those of gene conversion and crossover in yeast, respectively. Thus, we conclude that proximal-marker "flr" singles induced in the transheterozygote are gene convertants. Using the model based on yeast that recombination events result from repair of double-strand breaks or gaps, we propose that mitotic recombination in the fly is a secondary result of recombinational DNA repair. Evidence for recombinational misrepair in the fly is given. The relative ratio of radiation-induced mitotic crossover to spontaneous meiotic crossover is one order of magnitude higher in the fly than in yeast and humans.  相似文献   

16.
We have undertaken the study of a collection of 32 Drosophila melanogaster mus strains selected on the basis of developmental sensitivity to the DNA-damaging agents, methyl methanesulfonate (MMS), N-acetyl-2-aminofluorene (AAF), nitrogen mustard (HN2), and gamma-radiation. In total, 18 of these strains are sensitive to MMS. In turn, 14 of these exhibit unconditional MMS sensitivity (one of the latter mutants is lethal at 29 degrees C), whereas the other 4 are sensitive to MMS only at higher temperatures. Detailed analysis of the 7 strongest MMS-sensitive strains reveals that they identify 4 new second chromosome mus loci. Two mus loci are each represented by two alleles. One mutant (mus205B1) is allelic to a previously characterized mus locus. Different MMS-sensitive mutants display patterns of mutagen cross-sensitivity (to AAF, HN2, benzo[a]pyrene (BP), and gamma-rays) that parallel the range of responses seen in previously recovered X-linked and autosomal mus loci. In general, mutations that are strongly sensitive to MMS are also sensitive to one or both of the procarcinogens, AAF and BP, as opposed to HN2 and gamma-radiation. In contrast, the moderately MMS-sensitive mutations are sensitive to HN2 and gamma-rays, but not to AAF or BP. Of the 14 mus strains that are not sensitive to MMS, 5 are sensitive to AAF, another 5 are sensitive to HN2, and the remaining 4 are sensitive to gamma-rays.  相似文献   

17.
Heterozygous mammalian cell lines normally express both parental alleles at most autosomal loci. However, mutants can be isolated that fail to express one of the alleles. Using a murine pre-B cell line that is heterozygous for several loci on chromosome 12, including one encoding the cell surface antigen Ly-18, we found that one of the two Ly-18 antigenic forms was lost at a rate of 1.5 x 10(-5) per cell per generation. Molecular analysis revealed that a genetic marker distal to Ly-18 became homozygous. Analysis of the genotype of the mutants at the rDNA cluster, located close to the centromere, strongly suggests that the mutants arose by mitotic recombination within this multicopy locus.  相似文献   

18.
Loss of alleles at loci on chromosome 13 in human primary gastric cancers   总被引:5,自引:0,他引:5  
Mitotic events leading to the loss of the normal allele corresponding to a mutated gene are important for tumorigenesis in rare heritable tumors such as retinoblastoma and Wilms tumor. As reported for both colorectal and breast cancers, some common tumors seem to develop because of the same mitotic events. We examined constitutional and tumor genotypes defined by polymorphic DNA clones in 36 patients with gastric cancer. In 14 cases, constitutional heterozygosity at loci on chromosome 13 had been lost. Loss of alleles was also detected at a locus on chromosome 18 in two cases and at a locus on chromosome 17 in one case. The frequent loss of alleles at loci on chromosome 13 (41%) suggests that elimination of genes on this chromosome may be of importance in the tumorigenesis of human primary gastric cancers.  相似文献   

19.
The genetic and biochemical characteristics of a particular class of mutants at the rudimentary locus are described. The mutants are pyrimidine auxotrophs, like classical rudimentary alleles, but they are unique in that they do not alter the size or shape of the wing (Falk and Nash 1974b). Aspartate transcarbamylase and dihydroorotase activities have been measured in seven different normal-winged mutants, and the results indicate that these strains are enzymologically "leaky" mutants. Previous studies have shown that three genetic functions (corresponding to the first three enzymes of pyrimidine synthesis) are associated with the rudimentary locus. Four of the seven mutants appear to affect all three of these functions. Each of the four is temperature sensitive, and a biochemical analysis of the temperature sensitivity of one of these mutants, (r)pyr1-3, suggests that a process affecting the synthesis or assembly of these enzymes is altered at high temperatures.  相似文献   

20.
In the present study, the herbicides bentazone, molinate, thiobencarb and trifluralin were evaluated for mutagenic and recombinagenic effects using the wing spot test of Drosophila melanogaster (somatic mutation and recombination test, SMART). Both standard (ST) and high-bioactivation (HB) fly crosses were used, the latter cross is characterised by a high sensitivity to promutagens and procarcinogens. Three-day-old larvae, transheterozygous for the multiple wing hairs (mwh, 3-0.3) and flare-3 (flr(3), 3-38.8) genes, were chronically fed with six different concentrations of each herbicide. Feeding ended with pupation of the surviving larvae and the genetic changes induced in somatic cells of the wing's imaginal discs lead to the formation of mutant clones on the wing blade. Point mutation, chromosome breakage and mitotic recombination produce single spots; while twin spots are produced only by mitotic recombination. Bentazone, usually considered as a non-mutagen, gave positive results in the wing spot test with the high-bioactivation cross. Molinate, about which information on mutagenic effects is inconclusive, gave positive responses in both the standard and the high-bioactivation crosses, while the other thiocarbamate, thiobencarb, gave positive results only in the standard cross and at the highest concentration tested (10 mM). Finally, trifluralin, one of the most widely studied herbicides for genotoxic effects, gave positive results in the wing spot test with both crosses. Apart from the interest of the results found in the genotoxic evaluation of the four selected herbicides, our results also contribute to extend the existing database on the Drosophila wing spot test, and corroborate the utility of the use of high-bioactivation strains for the genotoxic evaluation of xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号