首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
火炬松原生质体的体细胞胚胎发生   总被引:4,自引:0,他引:4  
研究了基本培养基、原生质体密度和ABA浓度对火炬松(PinustaedaL.)悬浮细胞原生质体体细胞胚胎发生的影响。结果表明,DCR基本培养基最有利于原生质体的体细胞胚胎发生。体细胞胚胎发生所需的最适原生质体密度和ABA浓度分别是7×104个/mL和4mg/L。显微观察表明,来自原生质体的胚性胚柄细胞团(ESM:embryogenicsusPensormass),经早期原胚(ESP:earlystageProembryos)阶段形成了后期原胚(LSP:latestageProembryos)。这一结果为火炬松的原生质体培养再生植株奠定了基础。  相似文献   

2.
植物激素对体细胞胚胎发生的诱导与调节   总被引:62,自引:0,他引:62  
以作者自己的工作为背景,结合国内外近几年的有关报道,综述了几种外源和内源激素对植物体细胞胚胎发生的诱导与调节作用。外源生长素和细胞分裂素是诱导离体培养细胞分化与增殖所必需的,2,4-D是诱导胚性愈伤组织的重要激素。在体细胞胚胎发生中内源激素含量和代谢的平衡起着关键的作用,而且外源和内源激素对诱导体细胞胚胎发生起相互调节作用。ABA在提高体细胞胚胎发生频率和质量上具有重要作用,同时,外源与内源ABA对体细胞胚胎发生起相互促进作用。本文还较为深入地讨论了这些激素诱导体细胞胚胎发生的可能作用机制。 Abstract:The paper summarizes the induced and regulatory effects of a few exogenous and endogenous hormones in plant somatic embryogenesis by our studies and related international reports.The exogenous auxin and cytokinin are necessary to induced differentiation and proliferation of cells of culture in vitro.2,4-D is an important hormone of induced embryogenic calluses.The contents and the metabolic balances of endogenous hormones have key effects for somatic embryogenesis.In addition,the exogenous and endogenous hormones have mutual regulatory effects for somatic embryogenesis.ABA has an important effect to improving the frequency and quality of somatic embryogenesis.Meanwhile,the exogenous and endogenous ABA have mutual promoted effects for somatic embryogenesis.The paper discusses possible mechanism of hormones-induced somatic embryogenesis in a deep-going way.  相似文献   

3.
采用三因素多项式回归311-A最优设计方法对影响落叶松体细胞胚发生数量的ABA、PEG4000和AgNO3的用量进行了研究,建立了华北落叶松正常体细胞胚发生数量与ABA、PEG4000和AgNO3的数学模型,分析了落叶松体细胞胚发生数量试验因子的主效应和互作效应,优选了落叶松体细胞胚发生数量最佳结果的最佳技术组合方案为ABA18.9138mg/L,PEG400088.8007g/L与AgNO310.7513mg/L时,最佳体细胞胚数量应为107.5278个子叶胚/g.callus.实验结果表明:该方法是针叶树体细胞胚胎发生过程中,主要激素种类与浓度配比、处理组合,科学、合理的培养基优化途径.  相似文献   

4.
采用三因素多项式回归311-A最优设计方法对影响落叶松体细胞胚发生数量的ABA、PEG4000和AgNO3的用量进行了研究,建立了华北落叶松正常体细胞胚发生数量与ABA、PEG4000和AgNO3的数学模型,分析了落叶松体细胞胚发生数量试验因子的主效应和互作效应,优选了落叶松体细胞胚发生数量最佳结果的最佳技术组合方案为ABA18.9138mg/L,PEG4000.888007g/L与AgNO310.7513 mg/L时,最佳体细胞胚数量应为107.5278个子叶胚/g.callus。实验结果表明:该方法是针叶树体细胞胚胎发生过程中,主要激素种类与浓度配比、处理组合,科学、合理的培养基优化途径。  相似文献   

5.
ABA促进针叶树体细胞胚胎分化   总被引:6,自引:0,他引:6  
文章介绍ABA促进针叶树体细胞胚胎分化调控机制和应用的研究进展  相似文献   

6.
白蜡树属植物体细胞胚胎发生进展   总被引:2,自引:0,他引:2  
综述了近年来国内外对白蜡树属植物体细胞胚胎发生的研究概况,对影响体细胞胚胎发生的主要可控因素以及体细胞胚胎发生过程、机理、组织学方面作了介绍,并提出了白蜡树属体细胞胚胎发生研究的应用前景。  相似文献   

7.
云杉属树种的体细胞胚胎发生   总被引:14,自引:0,他引:14  
综述了云杉属树种体细胞胚胎发生的研究现状,其中包括:(1)影响云杉属树种体细胞胚胎发生及其植株再生的因素;(2)云杉属树种体细胞胚胎发生的形态学和细胞组织学研究。并展望了云杉属树种体细胞胚胎发生的应用前景及研究方向。  相似文献   

8.
云杉属树种的体细胞胚胎发生   总被引:1,自引:0,他引:1  
综述了云杉属树种体细胞胚胎发生的研究现状,其中包括:(1)影响云杉属树种体细胞胚胎发生及其植株再生的因素;(2)云杉属树种体细胞胚胎发生的形态学和细胞组织学研究。并展望了云杉属树种体细胞胚胎发生的应用前景及研究方向。  相似文献   

9.
松杉类植物体细胞胚发育机理的研究进展   总被引:3,自引:0,他引:3  
植物体细胞胚胎发生不仅可作为其繁育的重要手段,而且也是研究胚胎发育过程的一种重要模式系统.体细胞胚在形态和生理上的成熟,直接影响到植株的萌发和再生频率.本文综述了近年来国内外有关裸子植物中几种松杉类植物体细胞胚发育过程的研究报道,其中主要涉及培养基成分和脱落酸(ABA)对体细胞胚发育的影响,以及体细胞胚发育在细胞学、细胞程序性死亡、相关基因和蛋白质组学等方面的研究进展,并进一步讨论了松杉类植物体细胞胚的发育机理,以及体细胞胚在遗传转化系统中的作用.  相似文献   

10.
落叶松体细胞的胚胎发生   总被引:2,自引:0,他引:2  
简要回顾了重要用材树种落叶松体细胞胚胎发生的研究历史,并对落叶松体细胞胚胎发生的基本步骤、影响体细胞胚胎发生的因素及其主要应用,进行了综述,同时就落叶松体胚发生的研究趋势作了展望.  相似文献   

11.
脱落酸在植物体细胞胚胎发生中的调控作用   总被引:4,自引:0,他引:4  
脱落酸是一种具有全面生理功能的植物激素,在植物体细胞胚胎发生发育过程中具有重要的作用。根据国内外最新的研究文献,从脱落酸对植物体细胞胚胎发生的影响、植物体细胞胚胎发生过程中内源脱落酸含量的变化、脱落酸对体细胞胚胎发生过程中基因表达、信号转导的调控和转基因的表达调控入手,概述了脱落酸在植物体细胞胚胎发生中的调控作用。  相似文献   

12.
ABA对枸杞体细胞胚发生的调节作用   总被引:17,自引:1,他引:16  
Using Enzyme Linked Immunosorbent Assay (ELISA) method, we determined the ABA contents of different stages in somatic embryogenesis. The results showed that endogenous ABA contents increased to maximum value twice during somatic embryogenesis. After first maximum value of ABA contents embryogenic cells were observed in callus, and simultaneously, there was a specific protein of somatic embryogenesis investigated by SDS-PAGE. This protein accumulates preferentially in embryogenic callus but not in transferred callus. So it is suggested that ABA could promote the expression of specific genes and the synthesis of embryogenic protein during somatic embryogenesis in Lycium barbarum L. and ABA play an important role in globular stage as well. In addition, treatment of non-embryogenic activity callus with 4 mumol/L exogenous ABA could stimulate somatic embryogenesis. And the ABA function mechanism in relation to somatic embryogenesis was discussed.  相似文献   

13.
Kikuchi A  Sanuki N  Higashi K  Koshiba T  Kamada H 《Planta》2006,223(4):637-645
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10−4 M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.  相似文献   

14.
The influence of different plant growth regulators including 2,4-D,ZT, 6-BA and ABA on somatic embryogenesis and the amount of endogenous ABA at different stages of embryogenesis was investigated. The effect of each plant growth regulator changed according to the stage of embryogenesis. The amount of endogenous ABA was rather high in single cell stage, decreased at cell clump and embryogenic cell clump stages and dramatically increased at globular embryo stage. It decreased again as the embryo developed. This change in amount of the endogenous ABA explained very well the difference in the effect of exogenous ABA when applied at different stages of embryogenesis.  相似文献   

15.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

16.
Somatic embryos of Vitis vinifera (cv. Grenache noir) develop normally up to the torpedo stage, but they germinate precociously and form viable plantlets with very low frequency. Because a peak in abscisic acid (ABA) in mid‐embryogenesis could be one factor preventing precocious germination during normal seed development, we followed the development of ABA content concurrent with that of the somatic embryos. Additionally, we measured changes in indoleacetic acid (IAA) levels. We also compared the levels of both hormones during precocious germination of somatic embryos and during normal germination of their zygotic counterparts. Somatic embryos were able to accumulate ABA and IAA throughout their development but no peak in ABA concentration was detected during embryogenesis. This suggests that the switch from mid‐ to late‐embryogenesis is not triggered. Furthermore, during precocious germination, i.e. from the torpedo stage onwards, the concentrations of ABA and IAA in somatic embryos were much lower than during normal germination of zygotic embryos. Thus, it is likely that when precocious germination occurs, grape somatic embryos do not accumulate ABA and/or IAA in sufficient concentrations to support normal plantlet development. Therefore, for grape somatic embryos we propose that prevention of precocious germination, i.e. triggering late‐embryogenesis, is attainable by an ABA treatment followed by slow desiccation, as already shown for conifer somatic embryos. Our results also suggest that the role of ABA and IAA for improving normal germination after imposed quiescence should be investigated.  相似文献   

17.
In order to study how exogenous hormones in C. lanceolata (gymnosperm) regulate somatic embryogenesis, we measured the endogenous phytohormones of two genotypes with different somatic embryogenesis efficiency and found that an increase in endogenous concentrations of IAA and ABA may be correlated to more efficient somatic embryogenesis. By applying exogenous spermidine, we found that exogenous hormones may affect somatic embryogenesis efficiency through affecting the endogenous phytohormone content. Based on these results, further studies can be conducted whereby the concentration of exogenous hormones or the levels of endogenous phytohormones by molecular methods are regulated to promote somatic embryogenesis. Our research may benefit the long-term economic output of the forestry industry and lays the foundation to studying the molecular mechanism that controls somatic embryogenesis efficiency.  相似文献   

18.
Effects of application in vivo of glyphosate, fluridone, and paclobutrazol to glasshouse-grown donor plants of Pennisetum purpureum Schum. on endogenous levels of abscisic acid (ABA) and indole-3-acetic acid (IAA) in young leaves and on somatic embryogenesis in cultured leaf explants were studied. Treatment of plants with glyphosate (100 milligrams per liter) resulted in elevated levels of endogenous ABA and IAA in young leaves. In contrast, paclobutrazol (50% active ingredient; 200 milligrams per liter) did not alter the endogenous levels of ABA and IAA. Fluridone (100 milligrams per liter) markedly inhibited synthesis of ABA and leaf explants from fluridone-treated plants lost the capacity for somatic embryogenesis. Explants from glyphosate- or paclobutrazol-treated plants did not show any reduction in embryogenic capacity when compared with untreated control plants. Glyphosate and fluridone were also incorporated into the culture media at various concentrations (0 to 20 milligrams per liter) to study their effects in vitro on somatic embryogenesis in leaf explants from untreated, field-grown plants. Glyphosate was inhibitory to somatic embryogenesis but only at concentrations above 5 milligrams per liter. Fluridone inhibited somatic embryogenesis at all concentrations tested. Inhibition of somatic embryogenesis by fluridone, by either in vivo or in vitro application, could be overcome partially by (±)-ABA added to the culture medium. Exogenous application of (±)-ABA enhanced somatic embryogenesis and reduced the formation of nonembryogenic callus. Application of IAA or gibberellic acid (GA3; >5 milligrams per liter) was inhibitory to somatic embryogenesis. These results indicate that endogenous ABA is one of the important factors controlling the embryogenic capacity of leaf explants in Napier grass.  相似文献   

19.
In order to investigate the effect of ABA on secondary embryogenesis from somatic embryos inAralia cordata Thunb., embryogenic callus and somatic embryos were induced from inflorescence on solid MS basal medium supplemented with 1.5 mg/L 2,4-D after eight weeks without subculture. For mass production of somatic embryos, embryogenic cell clumps were maintained in liquid MS medium supplemented with 1.0 mg/L 2,4-D, and then transferred to 2, 4-D-free medium. When developing embryos at various stages were cultured separately in liquid medium with ABA (0 to 2.0 mg/L) for three weeks, and then cultured in ABA-free liquid medium for two weeks, torpedo-shaped embryos exhibited secondary embryogenesis of 65.9% in only 0.2 mg/L ABA pretreatment. Cotyledonary embryos in cultures by 0.2, 0.5 and 1.0 mg/L ABA pretreatment also exhibited secondary embryogenesis (73%, 9.4% and 6.0%, respectively). However, globular and heart-shaped somatic embryos treated with ABA did not form secondary embryos on their hypocotyl surfaces. When cotyledonary embryos were cultured in ABA-free medium or 0.2 mg/L ABA treated medium for three weeks, and then in ABA-free liquid medium for 6 weeks, the germination frequency was lower in medium with 0.2 mg/L ABA (45.9%) than in hormone-free medium (56.8%). This result seems to be related to the high frequency of secondary embryogenesis. It is suggested that secondary embryogenesis by ABA application depends upon the stage of embryo cultured and the ABA concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号